Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

Overview

DreamerPro

Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2. A re-implementation of Temporal Predictive Coding for Model-Based Planning in Latent Space is also included.

DreamerPro makes large performance gains on the DeepMind Control suite both in the standard setting and when there are complex background distractions. This is achieved by combining Dreamer with prototypical representations that free the world model from reconstructing visual details.

Setup

Dependencies

First clone the repository, and then set up a conda environment with all required dependencies using the requirements.txt file:

git clone https://github.com/fdeng18/dreamer-pro.git
cd dreamer-pro
conda create --name dreamer-pro python=3.8 conda-forge::cudatoolkit conda-forge::cudnn
conda activate dreamer-pro
pip install --upgrade pip
pip install -r requirements.txt

DreamerPro has not been tested on Atari, but if you would like to try, the Atari ROMs can be imported by following these instructions.

Natural background videos

Our natural background setting follows TPC. For convenience, we have included their code to download the background videos. Simply run:

python download_videos.py

This will download the background videos into kinetics400/videos.

Training

DreamerPro

For standard DMC, run:

cd DreamerPro
python dreamerv2/train.py --logdir log/dmc_{task}/dreamer_pro/{run} --task dmc_{task} --configs defaults dmc norm_off

Here, {task} should be replaced by the actual task, and {run} should be assigned an integer indicating the independent runs of the same model on the same task. For example, to start the first run on walker_run:

cd DreamerPro
python dreamerv2/train.py --logdir log/dmc_walker_run/dreamer_pro/1 --task dmc_walker_run --configs defaults dmc norm_off

For natural background DMC, run:

cd DreamerPro
python dreamerv2/train.py --logdir log/nat_{task}/dreamer_pro/{run} --task nat_{task} --configs defaults dmc reward_1000

TPC

DreamerPro is based on a newer version of Dreamer. For fair comparison, we re-implement TPC based on the same version. Our re-implementation obtains better results in the natural background setting than reported in the original TPC paper.

For standard DMC, run:

cd TPC
python dreamerv2/train.py --logdir log/dmc_{task}/tpc/{run} --task dmc_{task} --configs defaults dmc

For natural background DMC, run:

cd TPC
python dreamerv2/train.py --logdir log/nat_{task}/tpc/{run} --task nat_{task} --configs defaults dmc reward_1000

Dreamer

For standard DMC, run:

cd Dreamer
python dreamerv2/train.py --logdir log/dmc_{task}/dreamer/{run} --task dmc_{task} --configs defaults dmc

For natural background DMC, run:

cd Dreamer
python dreamerv2/train.py --logdir log/nat_{task}/dreamer/{run} --task nat_{task} --configs defaults dmc reward_1000 --precision 32

We find it necessary to use --precision 32 in the natural background setting for numerical stability.

Outputs

The training process can be monitored via TensorBoard. We have also included performance curves in plots. Note that these curves may appear different from what is shown in TensorBoard. This is because the evaluation return in the performance curves is averaged over 10 episodes, while TensorBoard only shows the evaluation return of the last episode.

Acknowledgments

This repository is largely based on the TensorFlow 2 implementation of Dreamer. We would like to thank Danijar Hafner for releasing and updating his clean implementation. In addition, we also greatly appreciate the help from Tung Nguyen in implementing TPC.

This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023