automatic color-grading

Overview

color-matcher

Description

color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, paintings and film sequences as well as light-field and stopmotion corrections. The methods behind the mappings are based on the approach from Reinhard et al., an analytical solution to a Multi-Variate Gaussian Distribution (MVGD) transfer, the Monge-Kantorovich solution as proposed by Pitie et al. and classical histogram matching.

release License GitHub Workflow Status coverage PyPi Dl2 PyPI Downloads

binder

Results

  Source Target Result
Photograph
Film sequence
Light-field correction
Paintings

Installation

  • via pip:
    1. install with pip3 install color-matcher
    2. type color-matcher -h to the command line once installation finished
  • from source:
    1. install Python from https://www.python.org/
    2. download the source using git clone https://github.com/hahnec/color-matcher.git
    3. go to the root directory cd color-matcher
    4. load dependencies $ pip3 install -r requirements.txt
    5. install with python3 setup.py install
    6. if installation ran smoothly, enter color-matcher -h to the command line

CLI Usage

From the root directory of your downloaded repo, you can run the tool on the provided test data by

color-matcher -s './tests/data/scotland_house.png' -r './tests/data/scotland_plain.png'

on a UNIX system where the result is found at ./tests/data/. A windows equivalent of the above command is

color-matcher --src=".\\tests\\data\\scotland_house.png" --ref=".\\tests\\data\\scotland_plain.png"

Alternatively, you can specify the method or select your images manually with

color-matcher --win --method='hm-mkl-hm'

Note that batch processing is possible by passing a source directory, e.g., via

color-matcher -s './tests/data/' -r './tests/data/scotland_plain.png'

More information on optional arguments, can be found using the help parameter

color-matcher -h

API Usage

from color_matcher import ColorMatcher
from color_matcher.io_handler import load_img_file, save_img_file, FILE_EXTS
from color_matcher.normalizer import Normalizer
import os

img_ref = load_img_file('./tests/data/scotland_plain.png')

src_path = '.'
filenames = [os.path.join(src_path, f) for f in os.listdir(src_path)
                     if f.lower().endswith(FILE_EXTS)]

for i, fname in enumerate(filenames):
    img_src = load_img_file(fname)
    obj = ColorMatcher(src=img_src, ref=img_ref, method='mkl')
    img_res = obj.main()
    img_res = Normalizer(img_res).uint8_norm()
    save_img_file(img_res, os.path.join(os.path.dirname(fname), str(i)+'.png'))

Citation

@misc{hahne2020plenopticam,
      title={PlenoptiCam v1.0: A light-field imaging framework},
      author={Christopher Hahne and Amar Aggoun},
      year={2020},
      eprint={2010.11687},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Author

Christopher Hahne

You might also like...
Spatial color quantization in Rust
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Rendering color and depth images for ShapeNet models.
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Implementation of GGB color space
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

An end-to-end image translation model with weight-map for color constancy
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Comments
  • Color-matcher batch processing

    Color-matcher batch processing

    I've just discovered color-matcher and find it potentially very useful for preprocessing histopathological datasets for deep learning. I can't, however, find a way to use it in batch mode - that is - is there any way to load more than one source image and/or more than one target image to process larger image datasets in batch?

    opened by SahPet 4
  • Doc suggests pip3 for install, Anaconda seems to work with pip only

    Doc suggests pip3 for install, Anaconda seems to work with pip only

    I'm using Anaconda (Conda 4.9.2) and used the documentation's suggested pip3 install procedure for color-matcher, but I couldn't run it from the command prompt. However, when I installed it via pip (just pip) it worked fine.

    I ain't entirely sure if this fella got Python 3.8 and Python 2.7 both in there, but somehow I can only get it to run by entering only color-matcher in the command line after installing through pip as opposed to pip3.

    Might need an extra line in the documentation saying do this if you're using Anaconda or Python 2.x or something, I ain't entirely sure of what's going on behind the scenes really.

    opened by torridgristle 1
  • Rendering videos

    Rendering videos

    hi thanks for this great piece of code.

    I am doing some tests on videos, is there a specific mode to ensure temporal consistency for video rendering?

    I have tried a few image by image processing, and the results are subject to flickering, especially when there are strong intense areas, even small (the blinking crosswalk light in the below examples)

    thanks

    https://user-images.githubusercontent.com/29961693/178616708-e5b7fd6d-b2aa-4dd1-abe8-2908267621b5.mp4

    https://user-images.githubusercontent.com/29961693/178616722-381ff433-ebaa-423d-801b-a518816068c3.mp4

    opened by Tetsujinfr 1
  • [ Feature Request ] CLUT Output

    [ Feature Request ] CLUT Output

    The ability to save a CLUT of the color transformation would be useful for applying the transformation to other scenes / videos / games, and for tweaking the transformation with other tools for artistic purposes with color-matcher's output as the starting point.

    Look I got the early morning lightheadedness and I wanna gush about this program, this has saved me such a hassle trying to white balance the most fucked up of photos with purple skin, absolutely marvelous. Software intended for auto white-balance just made em all green, but this matched it to a collage of similar faces in better lighting and damn if it isn't just the best outcome I could imagine for the material. I could overhaul an entire dataset and augment the shit out of it if I wanted. This is baller.

    feature-request 
    opened by torridgristle 6
Releases(v0.5.0)
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021