Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Overview

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models".

FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. See paper via this link.

Pretrained models

Download checkpoints from this link and this link. Put them under checkpoints\ema_diffusion_${dataset_name}_model\model.ckpt, where ${dataset_name} is cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat.

Usage

General command: python generate.py -ema -name ${dataset_name} -approxdiff ${approximate_diffusion_process} -kappa ${kappa} -S ${FastDPM_length} -schedule ${noise_level_schedule} -n ${number_to_generate} -bs ${batchsize} -gpu ${gpu_index}

  • ${dataset_name}: cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat
  • ${approximate_diffusion_process}: VAR or STEP
  • ${kappa}: a real value between 0 and 1
  • ${FastDPM_length}: an integer between 1 and 1000; 10, 20, 50, 100 used in paper.
  • ${noise_level_schedule}: linear or quadratic

CIFAR-10

Below are commands to generate CIFAR-10 images.

  • Standard DDPM generation: python generate.py -ema -name cifar10 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16

CelebA

Below are commands to generate CelebA images.

  • Standard DDPM generation: python generate.py -ema -name celeba64 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16

LSUN_bedroom

Below are commands to generate LSUN bedroom images.

  • Standard DDPM generation: python generate.py -ema -name lsun_bedroom -approxdiff STD -n 8 -bs 8
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8

Note

To generate 50K samples, set -n 50000 and batchsize (-bs) divisible by 50K.

Compute FID

To compute FID of generated samples, first make sure there are 50K images, and then run

  • python FID.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic

Code References

Owner
Zhifeng Kong
Ph.D. student, UCSD
Zhifeng Kong
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023