Principled Detection of Out-of-Distribution Examples in Neural Networks

Overview

ODIN: Out-of-Distribution Detector for Neural Networks

This is a PyTorch implementation for detecting out-of-distribution examples in neural networks. The method is described in the paper Principled Detection of Out-of-Distribution Examples in Neural Networks by S. Liang, Yixuan Li and R. Srikant. The method reduces the false positive rate from the baseline 34.7% to 4.3% on the DenseNet (applied to CIFAR-10) when the true positive rate is 95%.

Experimental Results

We used two neural network architectures, DenseNet-BC and Wide ResNet. The PyTorch implementation of DenseNet-BC is provided by Andreas Veit and Brandon Amos. The PyTorch implementation of Wide ResNet is provided by Sergey Zagoruyko. The experimental results are shown as follows. The definition of each metric can be found in the paper. performance

Pre-trained Models

We provide four pre-trained neural networks: (1) two DenseNet-BC networks trained on CIFAR-10 and CIFAR-100 respectively; (2) two Wide ResNet networks trained on CIFAR-10 and CIFAR-100 respectively. The test error rates are given by:

Architecture CIFAR-10 CIFAR-100
DenseNet-BC 4.81 22.37
Wide ResNet 3.71 19.86

Running the code

Dependencies

  • CUDA 8.0

  • PyTorch

  • Anaconda2 or 3

  • At least three GPU

    Note: Reproducing results of DenseNet-BC only requires one GPU, but reproducing results of Wide ResNet requires three GPUs. Single GPU version for Wide ResNet will be released soon in the future.

Downloading Out-of-Distribtion Datasets

We provide download links of five out-of-distributin datasets:

Here is an example code of downloading Tiny-ImageNet (crop) dataset. In the root directory, run

mkdir data
cd data
wget https://www.dropbox.com/s/avgm2u562itwpkl/Imagenet.tar.gz
tar -xvzf Imagenet.tar.gz
cd ..

Downloading Neural Network Models

We provide download links of four pre-trained models.

Here is an example code of downloading DenseNet-BC trained on CIFAR-10. In the root directory, run

mkdir models
cd models
wget https://www.dropbox.com/s/wr4kjintq1tmorr/densenet10.pth.tar.gz
tar -xvzf densenet10.pth.tar.gz
cd ..

Running

Here is an example code reproducing the results of DenseNet-BC trained on CIFAR-10 where TinyImageNet (crop) is the out-of-distribution dataset. The temperature is set as 1000, and perturbation magnitude is set as 0.0014. In the root directory, run

cd code
# model: DenseNet-BC, in-distribution: CIFAR-10, out-distribution: TinyImageNet (crop)
# magnitude: 0.0014, temperature 1000, gpu: 0
python main.py --nn densenet10 --out_dataset Imagenet --magnitude 0.0014 --temperature 1000 --gpu 0

Note: Please choose arguments according to the following.

args

  • args.nn: the arguments of neural networks are shown as follows

    Nerual Network Models args.nn
    DenseNet-BC trained on CIFAR-10 densenet10
    DenseNet-BC trained on CIFAR-100 densenet100
  • args.out_dataset: the arguments of out-of-distribution datasets are shown as follows

    Out-of-Distribution Datasets args.out_dataset
    Tiny-ImageNet (crop) Imagenet
    Tiny-ImageNet (resize) Imagenet_resize
    LSUN (crop) LSUN
    LSUN (resize) LSUN_resize
    iSUN iSUN
    Uniform random noise Uniform
    Gaussian random noise Gaussian
  • args.magnitude: the optimal noise magnitude can be found below. In practice, the optimal choices of noise magnitude are model-specific and need to be tuned accordingly.

    Out-of-Distribution Datasets densenet10 densenet100 wideresnet10 wideresnet100
    Tiny-ImageNet (crop) 0.0014 0.0014 0.0005 0.0028
    Tiny-ImageNet (resize) 0.0014 0.0028 0.0011 0.0028
    LSUN (crop) 0 0.0028 0 0.0048
    LSUN (resize) 0.0014 0.0028 0.0006 0.002
    iSUN 0.0014 0.0028 0.0008 0.0028
    Uniform random noise 0.0014 0.0028 0.0014 0.0028
    Gaussian random noise 0.0014 0.0028 0.0014 0.0028
  • args.temperature: temperature is set to 1000 in all cases.

  • args.gpu: make sure you use the following gpu when running the code:

    Neural Network Models args.gpu
    densenet10 0
    densenet100 0
    wideresnet10 1
    wideresnet100 2

Outputs

Here is an example of output.

Neural network architecture:          DenseNet-BC-100
In-distribution dataset:                     CIFAR-10
Out-of-distribution dataset:     Tiny-ImageNet (crop)

                          Baseline         Our Method
FPR at TPR 95%:              34.8%               4.3% 
Detection error:              9.9%               4.6%
AUROC:                       95.3%              99.1%
AUPR In:                     96.4%              99.2%
AUPR Out:                    93.8%              99.1%
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023