[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Related tags

Deep LearningOkMugle
Overview

Ok Mugle! 🎵

장르부터 멜로디까지, Content-based Music Recommendation

발표 ppt(1차)_1

Description 📖

  • 본 프로젝트에서는 Kakao Arena에서 제공하는 Melon Playlist Continuation 데이터를 활용하여, 사용자가 검색한 노래와 유사한 노래 추천을 구현하였습니다.

발표 ppt(1차)_8

  1. [Model] '유사성'의 기준을 멜로디, 분위기, 상황, 장르 등으로 정의
    • 해당 요소 반영하여 Music2Vec, Time Convolutional AutoEncoder, ConsineEmbeddingLoss Multimodal 등의 모델 Building
  2. [Retrieval] Embedding의 Cosine Similarity를 구하여 Retrieval 구성
  3. [Ranking] 다양한 Ranking Method 사용 → 추천 결과 Ensemble
  4. [Serving] 최종적으로 Score Total Top 10 Ranking Method의 추천 결과 활용하여 Web 구현 & 모델 Serving

Usage ✔️

  • Windows Shell에 아래 명령을 입력하여 실행합니다.
set FLASK_APP=server
set FLASK_ENV=development
flask run

Result (Web) 💻

웹 메인

  • 검색창에 '비투비 - 비밀 (Insane) (Acoustic Ver.)'를 검색한 결과 화면

웹 검색결과

Presentation 🙋

컨퍼런스 발표영상과 보고서입니다. 자세한 분석 내용은 아래 링크를 통해 확인해주세요!

  • GoogleDrive Badge
  • Youtube Badge

Contributor 🧑‍🤝‍🧑

기수 이름
15기 이성범
16기 김권호
16기 박한나
16기 이승주
16기 이예림
16기 주지훈
7기 이광록(멘토)

File Directory 📂

Ok Mugle!
├── 1. preprocessig
│   ├── make_song_meta_and_playlist.ipynb       # 노래, 플레이리스트 데이터 전처리
│   ├── make_mel_data.ipynb                     # 멜 데이터 전처리
│   └── make_mel_batch_data.ipynb               # 멜 데이터 배치 단위로 전처리
│
├── 2. model
│   ├── genre_embedding_model.ipynb             # Music2Vec
│   ├── mel_embedding_model.ipynb               # Time Convolutional Autoencoder
│   └── genre_and_mel_embedding_model.ipynb     # CosineEmbeddingLoss Multimodal
│
├── 3. embedding-visualization
│   └── embedding_visualization_tsne.ipynb      # t-SNE를 활용한 각 임베딩별 시각화
│
├── 4. ranking
│   ├── make_ranking_data_preprocessig.ipynb    # 각 임베딩별 코사인 유사도 Top50 데이터 셋 제작 
│   ├── make_ranking_data_multiprocessig.py     # make_ranking_data_preprocessig의 multiprocessig을 위한 함수
│   ├── make_ranking_data.ipynb                 # 순위별 가중치 ranking, 각 임베딩 별 상위 Top3 ranking
│   └── cos_sim_music_serving.ipynb             # 각 임베딩, ranking 별 결과
│
└── 5. web
    ├── crawling                                # 결과창 구현을 위한 데이터 수집
    │   └── melon_crawling.py 
    │ 
    ├── data                                    # 웹 제작에 활용된 데이터
    │    ├── ranking_song_id2playlist.json
    │    ├── song_id2artist_name_basket.json
    │    ├── song_id2song_name.json
    │    └── song_name_artist_name2song_id.json
    │ 
    ├── static                                  # 웹 제작에 활용된 css, font, image, js
    │    ├── css
    │    ├── fonts
    │    ├── images
    │    └── js
    │ 
    ├── templates                               # 프론트 구현
    │    ├── about.html
    │    ├── index.html
    │    ├── people.html
    │    └── result.html
    │ 
    └── server.py                               # 백엔드 구현
    │
    └── requirements.txt                        # 필요 패키지 목록
      
Owner
SeongBeomLEE
안녕하세요.👋 같이에 가치를 아는 머신러닝 엔지니어 이성범 입니다!
SeongBeomLEE
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022