code for CVPR paper Zero-shot Instance Segmentation

Overview

Code for CVPR2021 paper

Zero-shot Instance Segmentation

Code requirements

  • python: python3.7
  • nvidia GPU
  • pytorch1.1.0
  • GCC >=5.4
  • NCCL 2
  • the other python libs in requirement.txt

Install

conda create -n zsi python=3.7 -y
conda activate zsi

conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=10.0 -c pytorch

pip install cython && pip --no-cache-dir install -r requirements.txt
   
python setup.py develop

Dataset prepare

  • Download the train and test annotations files for zsi from annotations, put all json label file to

    data/coco/annotations/
    
  • Download MSCOCO-2014 dataset and unzip the images it to path:

    data/coco/train2014/
    data/coco/val2014/
    
  • Training:

    • 48/17 split:

         chmod +x tools/dist_train.sh
         ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py 4
      
    • 65/15 split:

      chmod +x tools/dist_train.sh
      ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py 4
      
  • Inference & Evaluate:

    • ZSI task:

      • 48/17 split ZSI task:
        • download 48/17 ZSI model, put it in checkpoints/ZSI_48_17.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py checkpoints/ZSI_48_17.pth 4 --json_out results/zsi_48_17.json
          
        • our results zsi_48_17.bbox.json and zsi_48_17.segm.json can also downloaded from zsi_48_17_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json --types segm
            
      • 65/15 split ZSI task:
        • download 65/15 ZSI model, put it in checkpoints/ZSI_65_15.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./toools/dist_test.sh configs/zsi/65_15/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py checkpoints/ZSI_65_15.pth 4 --json_out results/zsi_65_15.json
          
        • our results zsi_65_15.bbox.json and zsi_65_15.segm.json can also downloaded from zsi_65_15_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json --types segm
            
    • GZSI task:

      • 48/17 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder_gzsi.py checkpoints/ZSI_48_17.pth 4 --json_out results/gzsi_48_17.json
          
        • our results gzsi_48_17.bbox.json and gzsi_48_17.segm.json can also downloaded from gzsi_48_17_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48 --types segm
            
      • 65/15 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/65_15/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh_gzsi.py checkpoints/ZSI_65_15.pth 4 --json_out results/gzsi_65_15.json
          
        • our results gzsi_65_15.bbox.json and gzsi_65_15.segm.json can also downloaded from gzsi_65_15_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65 --types segm
            

License

ZSI is released under MIT License.

Citing

If you use ZSI in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@InProceedings{zhengye2021zsi,
  author  =  {Ye, Zheng and Jiahong, Wu and Yongqiag, Qin and Faen, Zhang and Li, Cui},
  title   =  {Zero-shot Instance Segmentation},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021}
}
Owner
zhengye
CS Phd
zhengye
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022