An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Related tags

Deep LearningSFA
Overview

Sequence Feature Alignment (SFA)

By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao

This repository is an official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers, which is accepted to ACM MultiMedia 2021.

Introduction

TL; DR. We develop a domain adaptive object detection method SFA that is specialized for adaptive detection transformers. It contains a domain query-based feature alignment model and a token-wise feature alignment module for global and local feature alignment respectively, and a bipartite matching consistency loss for improving robustness.

SFA

Abstract. Detection transformers have recently shown promising object detection results and attracted increasing attention. However, how to develop effective domain adaptation techniques to improve its cross-domain performance remains unexplored and unclear. In this paper, we delve into this topic and empirically find that direct feature distribution alignment on the CNN backbone only brings limited improvements, as it does not guarantee domain-invariant sequence features in the transformer for prediction. To address this issue, we propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers. Technically, SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module. In DQFA, a novel domain query is used to aggregate and align global context from the token sequence of both domains. DQFA reduces the domain discrepancy in global feature representations and object relations when deploying in the transformer encoder and decoder, respectively. Meanwhile, TDA aligns token features in the sequence from both domains, which reduces the domain gaps in local and instance-level feature representations in the transformer encoder and decoder, respectively. Besides, a novel bipartite matching consistency loss is proposed to enhance the feature discriminability for robust object detection. Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods.

Main Results

The experimental results and model weights for Cityscapes to Foggy Cityscapes are shown below.

Model mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
SFA-DefDETR 21.5 41.1 20.0 3.9 20.9 43.0 Google Drive
SFA-DefDETR-BoxRefine 23.9 42.6 22.5 3.8 21.6 46.7 Google Drive
SFA-DefDETR-TwoStage 24.1 42.5 22.8 3.8 22.0 48.1 Google Drive

Note:

  1. All models of SFA are trained with total batch size of 4.
  2. "DefDETR" means Deformable DETR (with R50 backbone).
  3. "BoxRefine" means Deformable DETR with iterative box refinement.
  4. "TwoStage" indicates the two-stage Deformable DETR variant.
  5. The original implementation is based on our internal codebase. There are slight differences in the released code are slight differences. For example, we only use the middle features output by the first encoder and decoder layers for hierarchical feature alignment, to reduce computational costs during training.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n sfa python=3.7 pip

    Then, activate the environment:

    conda activate sfa
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements/requirements.txt
  • Logging using wandb (optional)

    pip install -r requirements/optional.txt

Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Usage

Dataset preparation

We use the preparation of Cityscapes to Foggy Cityscapes adaptation as demonstration. Other domain adaptation benchmarks can be prepared in analog. Cityscapes and Foggy Cityscapes datasets can be downloaded from here. The annotations in COCO format can be obtained from here. Afterward, please organize the datasets and annotations as following:

[coco_path]
└─ cityscapes
   └─ leftImg8bit
      └─ train
      └─ val
└─ foggy_cityscapes
   └─ leftImg8bit_foggy
      └─ train
      └─ val
└─ CocoFormatAnnos
   └─ cityscapes_train_cocostyle.json
   └─ cityscapes_foggy_train_cocostyle.json
   └─ cityscapes_foggy_val_cocostyle.json

Training

As an example, we provide commands for training our SFA on a single node with 4 GPUs for weather adaptation.

Training SFA-DeformableDETR

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr.sh --wandb

Training SFA-DeformableDETR-BoxRefine

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr_plus_iterative_bbox_refinement.sh --wandb

Training SFA-DeformableDETR-TwoStage

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage.sh --wandb

Training Source-only DeformableDETR

Please refer to the source branch.

Evaluation

You can get the config file and pretrained model of SFA (the link is in "Main Results" session), then run following command to evaluate it on Foggy Cityscapes validation set:

<path to config file> --resume <path to pre-trained model> --eval

You can also run distributed evaluation by using ./tools/run_dist_launch.sh or ./tools/run_dist_slurm.sh.

Acknowledgement

This project is based on DETR and Deformable DETR. Thanks for their wonderful works. See LICENSE for more details.

Citing SFA

If you find SFA useful in your research, please consider citing:

@inproceedings{wang2021exploring ,
  title={Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers},
  author={Wen, Wang and Yang, Cao and Jing, Zhang and Fengxiang, He and Zheng-Jun, Zha and Yonggang, Wen and Dacheng, Tao},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}
Owner
WangWen
WangWen
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023