Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Overview

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval

This repo provides personal implementation of paper Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval in a simplified way. The code is refered to official version of ANCE.

Environment

'transformers==2.3.0' 
'pytrec-eval'
'faiss-cpu'
'wget'
'python==3.6.*'

Data Download & Preprocessing

To download all the needed data, run:

bash commands/data_download.sh 

Data Preprocessing

The command to preprocess passage and document data is listed below:

python data/msmarco_data.py 
--data_dir $raw_data_dir \
--out_data_dir $preprocessed_data_dir \ 
--model_type {use rdot_nll for ANCE FirstP, rdot_nll_multi_chunk for ANCE MaxP} \ 
--model_name_or_path roberta-base \ 
--max_seq_length {use 512 for ANCE FirstP, 2048 for ANCE MaxP} \ 
--data_type {use 1 for passage, 0 for document}

The data preprocessing command is included as the first step in the training command file commands/run_train.sh

Warmup for Training

ANCE training starts from a pretrained BM25 warmup checkpoint. The command with our used parameters to train this warmup checkpoint is in commands/run_train_warmup.py and is shown below:

    python3 -m torch.distributed.launch --nproc_per_node=1 ../drivers/run_warmup.py \
    --train_model_type rdot_nll \
    --model_name_or_path roberta-base \
    --task_name MSMarco \
    --do_train \
    --evaluate_during_training \
    --data_dir ${location of your raw data}  
    --max_seq_length 128 
    --per_gpu_eval_batch_size=256 \
    --per_gpu_train_batch_size=32 \
    --learning_rate 2e-4  \
    --logging_steps 100   \
    --num_train_epochs 2.0  \
    --output_dir ${location for checkpoint saving} \
    --warmup_steps 1000  \
    --overwrite_output_dir \
    --save_steps 30000 \
    --gradient_accumulation_steps 1 \
    --expected_train_size 35000000 \
    --logging_steps_per_eval 1 \
    --fp16 \
    --optimizer lamb \
    --log_dir ~/tensorboard/${DLWS_JOB_ID}/logs/OSpass

Training

To train the model(s) in the paper, you need to start two commands in the following order:

  1. run commands/run_train.sh which does three things in a sequence:

    a. Data preprocessing: this is explained in the previous data preprocessing section. This step will check if the preprocess data folder exists, and will be skipped if the checking is positive.

    b. Initial ANN data generation: this step will use the pretrained BM25 warmup checkpoint to generate the initial training data. The command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann_data_gen.py 
     --training_dir {# checkpoint location, not used for initial data generation} \ 
     --init_model_dir {pretrained BM25 warmup checkpoint location} \ 
     --model_type rdot_nll \
     --output_dir $model_ann_data_dir \
     --cache_dir $model_ann_data_dir_cache \
     --data_dir $preprocessed_data_dir \
     --max_seq_length 512 \
     --per_gpu_eval_batch_size 16 \
     --topk_training {top k candidates for ANN search(ie:200)} \ 
     --negative_sample {negative samples per query(20)} \ 
     --end_output_num 0 # only set as 0 for initial data generation, do not set this otherwise
    

    c. Training: ANCE training with the most recently generated ANN data, the command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann.py 
     --model_type rdot_nll \
     --model_name_or_path $pretrained_checkpoint_dir \
     --task_name MSMarco \
     --triplet {# default = False, action="store_true", help="Whether to run training}\ 
     --data_dir $preprocessed_data_dir \
     --ann_dir {location of the ANN generated training data} \ 
     --max_seq_length 512 \
     --per_gpu_train_batch_size=8 \
     --gradient_accumulation_steps 2 \
     --learning_rate 1e-6 \
     --output_dir $model_dir \
     --warmup_steps 5000 \
     --logging_steps 100 \
     --save_steps 10000 \
     --optimizer lamb 
    
  2. Once training starts, start another job in parallel to fetch the latest checkpoint from the ongoing training and update the training data. To do that, run

     bash commands/run_ann_data_gen.sh
    

    The command is similar to the initial ANN data generation command explained previously

Inference

The command for inferencing query and passage/doc embeddings is the same as that for Initial ANN data generation described above as the first step in ANN data generation is inference. However you need to add --inference to the command to have the program to stop after the initial inference step. commands/run_inference.sh provides a sample command.

Evaluation

The evaluation is done through "Calculate Metrics.ipynb". This notebook calculates full ranking and reranking metrics used in the paper including NDCG, MRR, hole rate, recall for passage/document, dev/eval set specified by user. In order to run it, you need to define the following parameters at the beginning of the Jupyter notebook.

    checkpoint_path = {location for dumpped query and passage/document embeddings which is output_dir from run_ann_data_gen.py}
    checkpoint =  {embedding from which checkpoint(ie: 200000)}
    data_type =  {0 for document, 1 for passage}
    test_set =  {0 for MSMARCO dev_set, 1 for TREC eval_set}
    raw_data_dir = 
    processed_data_dir = 

ANCE VS DPR on OpenQA Benchmarks

We also evaluate ANCE on the OpenQA benchmark used in a parallel work (DPR). At the time of our experiment, only the pre-processed NQ and TriviaQA data are released. Our experiments use the two released tasks and inherit DPR retriever evaluation. The evaluation uses the [email protected]/100 which is whether the Top-20/100 retrieved passages include the answer. We explain the steps to reproduce our results on OpenQA Benchmarks in this section.

Download data

commands/data_download.sh takes care of this step.

ANN data generation & ANCE training

Following the same training philosophy discussed before, the ann data generation and ANCE training for OpenQA require two parallel jobs.

  1. We need to preprocess data and generate an initial training set for ANCE to start training. The command for that is provided in:
commands/run_ann_data_gen_dpr.sh

We keep this data generation job running after it creates an initial training set as it will later keep generating training data with newest checkpoints from the training process.

  1. After an initial training set is generated, we start an ANCE training job with commands provided in:
commands/run_train_dpr.sh

During training, the evaluation metrics will be printed to tensorboards each time it receives new training data. Alternatively, you could check the metrics in the dumped file "ann_ndcg_#" in the directory specified by "model_ann_data_dir" in commands/run_ann_data_gen_dpr.sh each time new training data is generated.

Results

The run_train.sh and run_ann_data_gen.sh files contain the command with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document ANCE(MaxP) Our model achieves the following performance on MSMARCO dev set and TREC eval set :

MSMARCO Dev Passage Retrieval [email protected] [email protected] Steps
ANCE(FirstP) 0.330 0.959 600K
ANCE(MaxP) - - -
TREC DL Passage [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.677 0.648 600K
ANCE(MaxP) - - -
TREC DL Document [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.641 0.615 210K
ANCE(MaxP) 0.671 0.628 139K
MSMARCO Dev Passage Retrieval [email protected] Steps
pretrained BM25 warmup checkpoint 0.311 60K
ANCE Single-task Training Top-20 Top-100 Steps
NQ 81.9 87.5 136K
TriviaQA 80.3 85.3 100K
ANCE Multi-task Training Top-20 Top-100 Steps
NQ 82.1 87.9 300K
TriviaQA 80.3 85.2 300K

Click the steps in the table to download the corresponding checkpoints.

Our result for document ANCE(FirstP) TREC eval set top 100 retrieved document per query could be downloaded here. Our result for document ANCE(MaxP) TREC eval set top 100 retrieved document per query could be downloaded here.

The TREC eval set query embedding and their ids for our passage ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document 2048 ANCE(MaxP) experiment could be downloaded here.

The t-SNE plots for all the queries in the TREC document eval set for ANCE(FirstP) could be viewed here.

run_train.sh and run_ann_data_gen.sh files contain the commands with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document 2048 ANCE(MaxP) to reproduce the results in this section. run_train_warmup.sh contains the commands to reproduce the results for the pretrained BM25 warmup checkpoint in this section

Note the steps to reproduce similar results as shown in the table might be a little different due to different synchronizing between training and ann data generation processes and other possible environment differences of the user experiments.

Owner
John
My research interests are machine learning and recommender systems.
John
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022