Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Overview

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval

This repo provides personal implementation of paper Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval in a simplified way. The code is refered to official version of ANCE.

Environment

'transformers==2.3.0' 
'pytrec-eval'
'faiss-cpu'
'wget'
'python==3.6.*'

Data Download & Preprocessing

To download all the needed data, run:

bash commands/data_download.sh 

Data Preprocessing

The command to preprocess passage and document data is listed below:

python data/msmarco_data.py 
--data_dir $raw_data_dir \
--out_data_dir $preprocessed_data_dir \ 
--model_type {use rdot_nll for ANCE FirstP, rdot_nll_multi_chunk for ANCE MaxP} \ 
--model_name_or_path roberta-base \ 
--max_seq_length {use 512 for ANCE FirstP, 2048 for ANCE MaxP} \ 
--data_type {use 1 for passage, 0 for document}

The data preprocessing command is included as the first step in the training command file commands/run_train.sh

Warmup for Training

ANCE training starts from a pretrained BM25 warmup checkpoint. The command with our used parameters to train this warmup checkpoint is in commands/run_train_warmup.py and is shown below:

    python3 -m torch.distributed.launch --nproc_per_node=1 ../drivers/run_warmup.py \
    --train_model_type rdot_nll \
    --model_name_or_path roberta-base \
    --task_name MSMarco \
    --do_train \
    --evaluate_during_training \
    --data_dir ${location of your raw data}  
    --max_seq_length 128 
    --per_gpu_eval_batch_size=256 \
    --per_gpu_train_batch_size=32 \
    --learning_rate 2e-4  \
    --logging_steps 100   \
    --num_train_epochs 2.0  \
    --output_dir ${location for checkpoint saving} \
    --warmup_steps 1000  \
    --overwrite_output_dir \
    --save_steps 30000 \
    --gradient_accumulation_steps 1 \
    --expected_train_size 35000000 \
    --logging_steps_per_eval 1 \
    --fp16 \
    --optimizer lamb \
    --log_dir ~/tensorboard/${DLWS_JOB_ID}/logs/OSpass

Training

To train the model(s) in the paper, you need to start two commands in the following order:

  1. run commands/run_train.sh which does three things in a sequence:

    a. Data preprocessing: this is explained in the previous data preprocessing section. This step will check if the preprocess data folder exists, and will be skipped if the checking is positive.

    b. Initial ANN data generation: this step will use the pretrained BM25 warmup checkpoint to generate the initial training data. The command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann_data_gen.py 
     --training_dir {# checkpoint location, not used for initial data generation} \ 
     --init_model_dir {pretrained BM25 warmup checkpoint location} \ 
     --model_type rdot_nll \
     --output_dir $model_ann_data_dir \
     --cache_dir $model_ann_data_dir_cache \
     --data_dir $preprocessed_data_dir \
     --max_seq_length 512 \
     --per_gpu_eval_batch_size 16 \
     --topk_training {top k candidates for ANN search(ie:200)} \ 
     --negative_sample {negative samples per query(20)} \ 
     --end_output_num 0 # only set as 0 for initial data generation, do not set this otherwise
    

    c. Training: ANCE training with the most recently generated ANN data, the command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann.py 
     --model_type rdot_nll \
     --model_name_or_path $pretrained_checkpoint_dir \
     --task_name MSMarco \
     --triplet {# default = False, action="store_true", help="Whether to run training}\ 
     --data_dir $preprocessed_data_dir \
     --ann_dir {location of the ANN generated training data} \ 
     --max_seq_length 512 \
     --per_gpu_train_batch_size=8 \
     --gradient_accumulation_steps 2 \
     --learning_rate 1e-6 \
     --output_dir $model_dir \
     --warmup_steps 5000 \
     --logging_steps 100 \
     --save_steps 10000 \
     --optimizer lamb 
    
  2. Once training starts, start another job in parallel to fetch the latest checkpoint from the ongoing training and update the training data. To do that, run

     bash commands/run_ann_data_gen.sh
    

    The command is similar to the initial ANN data generation command explained previously

Inference

The command for inferencing query and passage/doc embeddings is the same as that for Initial ANN data generation described above as the first step in ANN data generation is inference. However you need to add --inference to the command to have the program to stop after the initial inference step. commands/run_inference.sh provides a sample command.

Evaluation

The evaluation is done through "Calculate Metrics.ipynb". This notebook calculates full ranking and reranking metrics used in the paper including NDCG, MRR, hole rate, recall for passage/document, dev/eval set specified by user. In order to run it, you need to define the following parameters at the beginning of the Jupyter notebook.

    checkpoint_path = {location for dumpped query and passage/document embeddings which is output_dir from run_ann_data_gen.py}
    checkpoint =  {embedding from which checkpoint(ie: 200000)}
    data_type =  {0 for document, 1 for passage}
    test_set =  {0 for MSMARCO dev_set, 1 for TREC eval_set}
    raw_data_dir = 
    processed_data_dir = 

ANCE VS DPR on OpenQA Benchmarks

We also evaluate ANCE on the OpenQA benchmark used in a parallel work (DPR). At the time of our experiment, only the pre-processed NQ and TriviaQA data are released. Our experiments use the two released tasks and inherit DPR retriever evaluation. The evaluation uses the [email protected]/100 which is whether the Top-20/100 retrieved passages include the answer. We explain the steps to reproduce our results on OpenQA Benchmarks in this section.

Download data

commands/data_download.sh takes care of this step.

ANN data generation & ANCE training

Following the same training philosophy discussed before, the ann data generation and ANCE training for OpenQA require two parallel jobs.

  1. We need to preprocess data and generate an initial training set for ANCE to start training. The command for that is provided in:
commands/run_ann_data_gen_dpr.sh

We keep this data generation job running after it creates an initial training set as it will later keep generating training data with newest checkpoints from the training process.

  1. After an initial training set is generated, we start an ANCE training job with commands provided in:
commands/run_train_dpr.sh

During training, the evaluation metrics will be printed to tensorboards each time it receives new training data. Alternatively, you could check the metrics in the dumped file "ann_ndcg_#" in the directory specified by "model_ann_data_dir" in commands/run_ann_data_gen_dpr.sh each time new training data is generated.

Results

The run_train.sh and run_ann_data_gen.sh files contain the command with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document ANCE(MaxP) Our model achieves the following performance on MSMARCO dev set and TREC eval set :

MSMARCO Dev Passage Retrieval [email protected] [email protected] Steps
ANCE(FirstP) 0.330 0.959 600K
ANCE(MaxP) - - -
TREC DL Passage [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.677 0.648 600K
ANCE(MaxP) - - -
TREC DL Document [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.641 0.615 210K
ANCE(MaxP) 0.671 0.628 139K
MSMARCO Dev Passage Retrieval [email protected] Steps
pretrained BM25 warmup checkpoint 0.311 60K
ANCE Single-task Training Top-20 Top-100 Steps
NQ 81.9 87.5 136K
TriviaQA 80.3 85.3 100K
ANCE Multi-task Training Top-20 Top-100 Steps
NQ 82.1 87.9 300K
TriviaQA 80.3 85.2 300K

Click the steps in the table to download the corresponding checkpoints.

Our result for document ANCE(FirstP) TREC eval set top 100 retrieved document per query could be downloaded here. Our result for document ANCE(MaxP) TREC eval set top 100 retrieved document per query could be downloaded here.

The TREC eval set query embedding and their ids for our passage ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document 2048 ANCE(MaxP) experiment could be downloaded here.

The t-SNE plots for all the queries in the TREC document eval set for ANCE(FirstP) could be viewed here.

run_train.sh and run_ann_data_gen.sh files contain the commands with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document 2048 ANCE(MaxP) to reproduce the results in this section. run_train_warmup.sh contains the commands to reproduce the results for the pretrained BM25 warmup checkpoint in this section

Note the steps to reproduce similar results as shown in the table might be a little different due to different synchronizing between training and ann data generation processes and other possible environment differences of the user experiments.

Owner
John
My research interests are machine learning and recommender systems.
John
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Atif Hassan 103 Dec 14, 2022