Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Overview

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval

This repo provides personal implementation of paper Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval in a simplified way. The code is refered to official version of ANCE.

Environment

'transformers==2.3.0' 
'pytrec-eval'
'faiss-cpu'
'wget'
'python==3.6.*'

Data Download & Preprocessing

To download all the needed data, run:

bash commands/data_download.sh 

Data Preprocessing

The command to preprocess passage and document data is listed below:

python data/msmarco_data.py 
--data_dir $raw_data_dir \
--out_data_dir $preprocessed_data_dir \ 
--model_type {use rdot_nll for ANCE FirstP, rdot_nll_multi_chunk for ANCE MaxP} \ 
--model_name_or_path roberta-base \ 
--max_seq_length {use 512 for ANCE FirstP, 2048 for ANCE MaxP} \ 
--data_type {use 1 for passage, 0 for document}

The data preprocessing command is included as the first step in the training command file commands/run_train.sh

Warmup for Training

ANCE training starts from a pretrained BM25 warmup checkpoint. The command with our used parameters to train this warmup checkpoint is in commands/run_train_warmup.py and is shown below:

    python3 -m torch.distributed.launch --nproc_per_node=1 ../drivers/run_warmup.py \
    --train_model_type rdot_nll \
    --model_name_or_path roberta-base \
    --task_name MSMarco \
    --do_train \
    --evaluate_during_training \
    --data_dir ${location of your raw data}  
    --max_seq_length 128 
    --per_gpu_eval_batch_size=256 \
    --per_gpu_train_batch_size=32 \
    --learning_rate 2e-4  \
    --logging_steps 100   \
    --num_train_epochs 2.0  \
    --output_dir ${location for checkpoint saving} \
    --warmup_steps 1000  \
    --overwrite_output_dir \
    --save_steps 30000 \
    --gradient_accumulation_steps 1 \
    --expected_train_size 35000000 \
    --logging_steps_per_eval 1 \
    --fp16 \
    --optimizer lamb \
    --log_dir ~/tensorboard/${DLWS_JOB_ID}/logs/OSpass

Training

To train the model(s) in the paper, you need to start two commands in the following order:

  1. run commands/run_train.sh which does three things in a sequence:

    a. Data preprocessing: this is explained in the previous data preprocessing section. This step will check if the preprocess data folder exists, and will be skipped if the checking is positive.

    b. Initial ANN data generation: this step will use the pretrained BM25 warmup checkpoint to generate the initial training data. The command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann_data_gen.py 
     --training_dir {# checkpoint location, not used for initial data generation} \ 
     --init_model_dir {pretrained BM25 warmup checkpoint location} \ 
     --model_type rdot_nll \
     --output_dir $model_ann_data_dir \
     --cache_dir $model_ann_data_dir_cache \
     --data_dir $preprocessed_data_dir \
     --max_seq_length 512 \
     --per_gpu_eval_batch_size 16 \
     --topk_training {top k candidates for ANN search(ie:200)} \ 
     --negative_sample {negative samples per query(20)} \ 
     --end_output_num 0 # only set as 0 for initial data generation, do not set this otherwise
    

    c. Training: ANCE training with the most recently generated ANN data, the command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann.py 
     --model_type rdot_nll \
     --model_name_or_path $pretrained_checkpoint_dir \
     --task_name MSMarco \
     --triplet {# default = False, action="store_true", help="Whether to run training}\ 
     --data_dir $preprocessed_data_dir \
     --ann_dir {location of the ANN generated training data} \ 
     --max_seq_length 512 \
     --per_gpu_train_batch_size=8 \
     --gradient_accumulation_steps 2 \
     --learning_rate 1e-6 \
     --output_dir $model_dir \
     --warmup_steps 5000 \
     --logging_steps 100 \
     --save_steps 10000 \
     --optimizer lamb 
    
  2. Once training starts, start another job in parallel to fetch the latest checkpoint from the ongoing training and update the training data. To do that, run

     bash commands/run_ann_data_gen.sh
    

    The command is similar to the initial ANN data generation command explained previously

Inference

The command for inferencing query and passage/doc embeddings is the same as that for Initial ANN data generation described above as the first step in ANN data generation is inference. However you need to add --inference to the command to have the program to stop after the initial inference step. commands/run_inference.sh provides a sample command.

Evaluation

The evaluation is done through "Calculate Metrics.ipynb". This notebook calculates full ranking and reranking metrics used in the paper including NDCG, MRR, hole rate, recall for passage/document, dev/eval set specified by user. In order to run it, you need to define the following parameters at the beginning of the Jupyter notebook.

    checkpoint_path = {location for dumpped query and passage/document embeddings which is output_dir from run_ann_data_gen.py}
    checkpoint =  {embedding from which checkpoint(ie: 200000)}
    data_type =  {0 for document, 1 for passage}
    test_set =  {0 for MSMARCO dev_set, 1 for TREC eval_set}
    raw_data_dir = 
    processed_data_dir = 

ANCE VS DPR on OpenQA Benchmarks

We also evaluate ANCE on the OpenQA benchmark used in a parallel work (DPR). At the time of our experiment, only the pre-processed NQ and TriviaQA data are released. Our experiments use the two released tasks and inherit DPR retriever evaluation. The evaluation uses the [email protected]/100 which is whether the Top-20/100 retrieved passages include the answer. We explain the steps to reproduce our results on OpenQA Benchmarks in this section.

Download data

commands/data_download.sh takes care of this step.

ANN data generation & ANCE training

Following the same training philosophy discussed before, the ann data generation and ANCE training for OpenQA require two parallel jobs.

  1. We need to preprocess data and generate an initial training set for ANCE to start training. The command for that is provided in:
commands/run_ann_data_gen_dpr.sh

We keep this data generation job running after it creates an initial training set as it will later keep generating training data with newest checkpoints from the training process.

  1. After an initial training set is generated, we start an ANCE training job with commands provided in:
commands/run_train_dpr.sh

During training, the evaluation metrics will be printed to tensorboards each time it receives new training data. Alternatively, you could check the metrics in the dumped file "ann_ndcg_#" in the directory specified by "model_ann_data_dir" in commands/run_ann_data_gen_dpr.sh each time new training data is generated.

Results

The run_train.sh and run_ann_data_gen.sh files contain the command with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document ANCE(MaxP) Our model achieves the following performance on MSMARCO dev set and TREC eval set :

MSMARCO Dev Passage Retrieval [email protected] [email protected] Steps
ANCE(FirstP) 0.330 0.959 600K
ANCE(MaxP) - - -
TREC DL Passage [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.677 0.648 600K
ANCE(MaxP) - - -
TREC DL Document [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.641 0.615 210K
ANCE(MaxP) 0.671 0.628 139K
MSMARCO Dev Passage Retrieval [email protected] Steps
pretrained BM25 warmup checkpoint 0.311 60K
ANCE Single-task Training Top-20 Top-100 Steps
NQ 81.9 87.5 136K
TriviaQA 80.3 85.3 100K
ANCE Multi-task Training Top-20 Top-100 Steps
NQ 82.1 87.9 300K
TriviaQA 80.3 85.2 300K

Click the steps in the table to download the corresponding checkpoints.

Our result for document ANCE(FirstP) TREC eval set top 100 retrieved document per query could be downloaded here. Our result for document ANCE(MaxP) TREC eval set top 100 retrieved document per query could be downloaded here.

The TREC eval set query embedding and their ids for our passage ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document 2048 ANCE(MaxP) experiment could be downloaded here.

The t-SNE plots for all the queries in the TREC document eval set for ANCE(FirstP) could be viewed here.

run_train.sh and run_ann_data_gen.sh files contain the commands with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document 2048 ANCE(MaxP) to reproduce the results in this section. run_train_warmup.sh contains the commands to reproduce the results for the pretrained BM25 warmup checkpoint in this section

Note the steps to reproduce similar results as shown in the table might be a little different due to different synchronizing between training and ann data generation processes and other possible environment differences of the user experiments.

Owner
John
My research interests are machine learning and recommender systems.
John
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023