PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Related tags

Deep LearningEMSRDPN
Overview

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning

This repository is for EMSRDPN introduced in the following paper

Bin-Cheng Yang and Gangshan Wu, "Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning", [arxiv]

It's an extension to a conference paper

Bin-Cheng Yang. 2019. Super Resolution Using Dual Path Connections. In Proceedings of the 27th ACM International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM, NewYork, NY, USA, 9 pages. https://doi.org/10.1145/3343031.3350878

The code is built on EDSR (PyTorch) and tested on Ubuntu 16.04 environment (Python3.7, PyTorch_1.1.0, CUDA9.0) with Titan X/Xp/V100 GPUs.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Results
  5. Citation
  6. Acknowledgements

Introduction

Deep convolutional neural networks have been demonstrated to be effective for SISR in recent years. On the one hand, residual connections and dense connections have been used widely to ease forward information and backward gradient flows to boost performance. However, current methods use residual connections and dense connections separately in most network layers in a sub-optimal way. On the other hand, although various networks and methods have been designed to improve computation efficiency, save parameters, or utilize training data of multiple scale factors for each other to boost performance, it either do super-resolution in HR space to have a high computation cost or can not share parameters between models of different scale factors to save parameters and inference time. To tackle these challenges, we propose an efficient single image super-resolution network using dual path connections with multiple scale learning named as EMSRDPN. By introducing dual path connections inspired by Dual Path Networks into EMSRDPN, it uses residual connections and dense connections in an integrated way in most network layers. Dual path connections have the benefits of both reusing common features of residual connections and exploring new features of dense connections to learn a good representation for SISR. To utilize the feature correlation of multiple scale factors, EMSRDPN shares all network units in LR space between different scale factors to learn shared features and only uses a separate reconstruction unit for each scale factor, which can utilize training data of multiple scale factors to help each other to boost performance, meanwhile which can save parameters and support shared inference for multiple scale factors to improve efficiency. Experiments show EMSRDPN achieves better performance and comparable or even better parameter and inference efficiency over SOTA methods.

Train

Prepare training data

  1. Download DIV2K training data (800 training images for x2, x3, x4 and x8) from DIV2K dataset and Flickr2K training data (2650 training images) from Flickr2K dataset.

  2. Untar the download files.

  3. Using src/generate_LR_x8.m to generate x8 LR data for Flickr2K dataset, you need to modify 'folder' in src/generate_LR_x8.m to your directory to place Flickr2K dataset.

  4. Specify '--dir_data' in src/option.py to your directory to place DIV2K and Flickr2K datasets.

For more informaiton, please refer to EDSR(PyTorch).

Begin to train

  1. Cd to 'src', run the following scripts to train models.

    You can use scripts in file 'demo.sh' to train models for our paper.

    To train a fresh model using DIV2K dataset

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K

    To train a fresh model using Flickr2K dataset

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train Flickr2K

    To train a fresh model using both DIV2K and Flickr2K datasets to reproduce results in the paper, you need copy all the files in DIV2K_HR/ to Flickr2K_HR/, copy all the directories in DIV2K_LR_bicubic/ to Flickr2K_LR_bicubic/, then using the following script

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train Flickr2K

    To continue a unfinished model using DIV2K dataset, the processes for other datasets are similiar

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --resume -1 --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --load EMSRDPN_BIx2348

Test

Quick start

  1. Download benchmark dataset from BaiduYun (access code: 20v5), place them in directory specified by '--dir_data' in src/option.py, untar it.

  2. Download EMSRDPN model for our paper from BaiduYun (access code: d2ov) and place them in 'experiment/'. Other multiple scale models can be downloaded from BaiduYun (access code: z5ey).

  3. Cd to 'src', run the following scripts to test downloaded EMSRDPN model.

    You can use scripts in file 'demo.sh' to produce results for our paper.

    To test a trained model

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5+Set14+B100+Urban100+Manga109 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results

    To test a trained model using self ensemble

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test+ --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5+Set14+B100+Urban100+Manga109 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results --self_ensemble

    To test a trained model using multiple scale infer

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test_multi_scale_infer --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results --multi_scale_infer

Results

All the test results can be download from BaiduYun (access code: oawz).

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{2019Super,
  title={Super Resolution Using Dual Path Connections},
  author={ Yang, Bin Cheng },
  booktitle={the 27th ACM International Conference},
  year={2019},
}

@misc{yang2021efficient,
      title={Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning}, 
      author={Bin-Cheng Yang and Gangshan Wu},
      year={2021},
      eprint={2112.15386},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their code.

Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
Facebook Research 605 Jan 02, 2023
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022