Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Overview

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

[Project Page] [Paper] [Supp. Mat.]

SMPL-X Examples

Table of Contents

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the SMPL-X/SMPLify-X model, data and software, (the "Model & Software"), including 3D meshes, blend weights, blend shapes, textures, software, scripts, and animations. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Disclaimer

The original images used for the figures 1 and 2 of the paper can be found in this link. The images in the paper are used under license from gettyimages.com. We have acquired the right to use them in the publication, but redistribution is not allowed. Please follow the instructions on the given link to acquire right of usage. Our results are obtained on the 483 × 724 pixels resolution of the original images.

Description

This repository contains the fitting code used for the experiments in Expressive Body Capture: 3D Hands, Face, and Body from a Single Image.

Fitting

Run the following command to execute the code:

python smplifyx/main.py --config cfg_files/fit_smplx.yaml 
    --data_folder DATA_FOLDER 
    --output_folder OUTPUT_FOLDER 
    --visualize="True/False"
    --model_folder MODEL_FOLDER
    --vposer_ckpt VPOSER_FOLDER
    --part_segm_fn smplx_parts_segm.pkl

where the DATA_FOLDER should contain two subfolders, images, where the images are located, and keypoints, where the OpenPose output should be stored.

Different Body Models

To fit SMPL or SMPL+H, replace the yaml configuration file with either fit_smpl.yaml or fit_smplx.yaml, i.e.:

  • for SMPL:
python smplifyx/main.py --config cfg_files/fit_smpl.yaml 
   --data_folder DATA_FOLDER 
   --output_folder OUTPUT_FOLDER 
   --visualize="True/False"
   --model_folder MODEL_FOLDER
   --vposer_ckpt VPOSER_FOLDER
  • for SMPL+H:
python smplifyx/main.py --config cfg_files/fit_smplh.yaml 
   --data_folder DATA_FOLDER 
   --output_folder OUTPUT_FOLDER 
   --visualize="True/False"
   --model_folder MODEL_FOLDER
   --vposer_ckpt VPOSER_FOLDER

Visualizing Results

To visualize the results produced by the method you can run the following script:

python smplifyx/render_results.py --mesh_fns OUTPUT_MESH_FOLDER

where OUTPUT_MESH_FOLDER is the folder that contains the resulting meshes.

Dependencies

Follow the installation instructions for each of the following before using the fitting code.

  1. PyTorch
  2. SMPL-X
  3. VPoser
  4. Homogenus

Optional Dependencies

  1. PyTorch Mesh self-intersection for interpenetration penalty
  2. Trimesh for loading triangular meshes
  3. Pyrender for visualization

The code has been tested with Python 3.6, CUDA 10.0, CuDNN 7.3 and PyTorch 1.0 on Ubuntu 18.04.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{SMPL-X:2019,
  title = {Expressive Body Capture: 3D Hands, Face, and Body from a Single Image},
  author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
  booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
  year = {2019}
}

Acknowledgments

LBFGS with Strong Wolfe Line Search

The LBFGS optimizer with Strong Wolfe Line search is taken from this Pytorch pull request. Special thanks to Du Phan for implementing this. We will update the repository once the pull request is merged.

Contact

The code of this repository was implemented by Vassilis Choutas and Georgios Pavlakos.

For questions, please contact [email protected].

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Vassilis Choutas
Ph.D. Student, Perceiving Systems, Max Planck ETH Center for Learning Systems
Vassilis Choutas
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022