COD-Rank-Localize-and-Segment (CVPR2021)

Overview

COD-Rank-Localize-and-Segment (CVPR2021)

Simultaneously Localize, Segment and Rank the Camouflaged Objects alt text alt text

Full camouflage fixation training dataset is available!

The full camouflage fixation training dataset is available with the full fixation maps for the COD10K training dataset, which can be downloaded from: https://drive.google.com/file/d/1inb5iNTDswFPDm4SpzBbVgZdI4puAv_3/view?usp=sharing

Camouflage Localization and Ranking dataset

We labeled the COD10K training dataset with eye tracker to localize the camouflaged objects, and generate 2000 images with localization and ranking label (We are generating fixation and label for all the existing training and testing dataset, and will release the dataset very soon.). The training dataset is as:

https://drive.google.com/file/d/12kSU6QrPAiumWpSkMqi5nPMo1awBW0_N/view?usp=sharing

which include 2000 images, with the corresponding fixation label, ranking label and instance level labels.

The testing dataset is as:

https://drive.google.com/file/d/1Gz5GzL9eeW13aZjlzaisrJFGO-HmhLxS/view?usp=sharing

which include 280 images with fixation, ranking and instance level labels.

Our Results

We train our triple-task learning framework with the above 2000 image training dataset and show the results in Table 1 of the main paper. The resulted camouflage maps are as:

https://drive.google.com/file/d/1ahu77JP-hzjgup20fNIftCB_cHanE323/view?usp=sharing

We also train our camouflaged object detection task along with the original COD10K training dataset, and show the performance in Table 4. The resulted camouflage maps are as:

https://drive.google.com/file/d/10sr2lX38FEgSXL3k27gidlaPKo5VQyjv/view?usp=sharing

Note that, we re-train our models, and the resulted performance is slightly difference from our reported numbers.

Benchmark results:

  1. Please download the benchmark results (camoudlage maps) for your convienience. All the benchmark methods are trained with the COD10K training dataset (of size 4040):

https://drive.google.com/drive/folders/1sdly_TFW2WVqSm-hzuVXYKnu3DxkF-0F?usp=sharing

  1. Or the computed evaluation metrics:

https://drive.google.com/file/d/17SyikbvnNF6g0_2BteyplQLid2o0KZTc/view?usp=sharing

New dataset: NC4K

Please download our newly collected camouflaged object detection testing dataset, namely NC4K, in the link below (with image, ground truth map, and instance level annotation): https://drive.google.com/file/d/1kzpX_U3gbgO9MuwZIWTuRVpiB7V6yrAQ/view?usp=sharing

or please download it from BaiduNetDisk: 链接:https://pan.baidu.com/s/1bG4F2KJ_4UJG_7XG6ZNBHA 密码:d581

Our Bib:

Please cite our paper if necessary:

@inproceedings{yunqiu_cod21,
  title={Simultaneously Localize, Segment and Rank the Camouflaged Objects},
  author={Lyu, Yunqiu and Zhang, Jing and Dai, Yuchao and Li, Aixuan and Liu, Bowen and Barnes, Nick and Fan, Deng-Ping},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Contact

Please drop me an email for further problems or discussion: [email protected]

Owner
JingZhang
PhD Candidate
JingZhang
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022