A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Overview

Paper

Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021

Our code is mainly based on the code from the paper: Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua Lin, Chen Change Loy, "Self-Supervised Scene De-occlusion"

Requirements

  • pytorch>=0.4.1

    pip install -r requirements.txt

Data Preparation

COCOA dataset proposed in Semantic Amodal Segmentation.

  1. Download COCO2014 train and val images from here and unzip.

  2. Download COCOA annotations from here and untar.

  3. Ensure the COCOA folder looks like:

    COCOA/
      |-- train2014/
      |-- val2014/
      |-- annotations/
        |-- COCO_amodal_train2014.json
        |-- COCO_amodal_val2014.json
        |-- COCO_amodal_test2014.json
        |-- ...
    
  4. Create symbolic link:

    cd deocclusion
    mkdir data
    cd data
    ln -s /path/to/COCOA
    

KINS dataset proposed in Amodal Instance Segmentation with KINS Dataset.

  1. Download left color images of object data in KITTI dataset from here and unzip.

  2. Download KINS annotations from here corresponding to this commit.

  3. Ensure the KINS folder looks like:

    KINS/
      |-- training/image_2/
      |-- testing/image_2/
      |-- instances_train.json
      |-- instances_val.json
    
  4. Create symbolic link:

    cd deocclusion/data
    ln -s /path/to/KINS
    

Train

train PCNet-M

  1. Train (taking COCOA for example).

    ./train_pcnet_m_std_no_rgb_gaussian.sh
    
  2. Monitoring status and visual results using tensorboard.

    sh tensorboard.sh $PORT
    

Evaluate

  • Execute:

    ./test_pcnet_m.sh

Bibtex

@InProceedings{Nguyen_2021_ICCV,
    author    = {Nguyen, Khoi and Todorovic, Sinisa},
    title     = {A Weakly Supervised Amodal Segmenter With Boundary Uncertainty Estimation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {7396-7405}
}

Acknowledgement

  1. We developed our approach based on the code from https://github.com/XiaohangZhan/deocclusion/

  2. We used the code and models of GCA-Matting in our demo.

  3. We modified some code from pytorch-inpainting-with-partial-conv to train the PCNet-C.

Owner
Khoi Nguyen
Ph.D. in Computer Science with major in Computer Vision
Khoi Nguyen
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022