MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

Related tags

Deep LearningMOpt-AFL
Overview

MOpt-AFL

1. Description

MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal selection probability distribution of operators with respect to fuzzing effectiveness. More details can be found in the technical report. The installation of MOpt-AFL is the same as AFL's.

2. Cite Information

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song and Raheem Beyah, MOPT: Optimized Mutation Scheduling for Fuzzers, USENIX Security 2019.

3. Seed Sets

We open source all the seed sets used in the paper "MOPT: Optimized Mutation Scheduling for Fuzzers".

4. Experiment Results

The experiment results can be found in https://drive.google.com/drive/folders/184GOzkZGls1H2NuLuUfSp9gfqp1E2-lL?usp=sharing. We only open source the crash files since the space is limited.

5. Technical Report

MOpt_TechReport.pdf is the technical report of the paper "MOPT: Optimized Mutation Scheduling for Fuzzers", which contains more deatails.

6. Parameter Introduction

Most important, you must add the parameter -L (e.g., -L 0) to launch the MOpt scheme.


-L controls the time to move on to the pacemaker fuzzing mode.
-L t: when MOpt-AFL finishes the mutation of one input, if it has not discovered any new unique crash or path for more than t min, MOpt-AFL will enter the pacemaker fuzzing mode.


Setting 0 will enter the pacemaker fuzzing mode at first, which is recommended in a short time-scale evaluation (like 2 hours).
For instance, it may take three or four days for MOpt-AFL to enter the pacemaker fuzzing mode when -L 30.

Hey guys, I realize that most experiments may last no longer than 24 hours. You may have trouble selecting a suitable value of 'L' without testing. So I modify the code in order to employ '-L 1' as the default setting. This means you do not have to add the parameter 'L' to launch the MOpt scheme. If you wish, provide a parameter '-L t' in the cmd can adjust the time when MOpt will enter the pacemaker fuzzing mode as aforementioned. Whether MOpt enters the pacemaker fuzzing mode has a great influence on the fuzzing performance in some cases as shown in our paper.
'-L 1' may not be the best choice but will be acceptable in most cases. I may provide several experiment results to show this situation.

The unique paths found by different fuzzing settings in 24 hours.
Fuzzing setting infotocap @@ -o /dev/null objdump -S @@ sqlite3
MOpt -L 0 3629 5106 10498
MOpt -L 1 3983 5499 9975
MOpt -L 5 3772 2512 9332
MOpt -L 10 4062 4741 9465
MOpt -L 30 3162 1991 6337
AFL 1821 1099 4949

Other important parameters can be found in afl-fuzz.c, for instance,
swarm_num: the number of the PSO swarms used in the fuzzing process.
period_pilot: how many times MOpt-AFL will execute the target program in the pilot fuzzing module, then it will enter the core fuzzing module.
period_core: how many times MOpt-AFL will execute the target program in the core fuzzing module, then it will enter the PSO updating module.
limit_time_bound: control how many interesting test cases need to be found before MOpt-AFL quits the pacemaker fuzzing mode and reuses the deterministic stage. 0 < limit_time_bound < 1, MOpt-AFL-tmp. limit_time_bound >= 1, MOpt-AFL-ever.

Having fun with MOpt-AFL.

Citation:

@inproceedings {236282,
author = {Chenyang Lyu and Shouling Ji and Chao Zhang and Yuwei Li and Wei-Han Lee and Yu Song and Raheem Beyah},
title = {{MOPT}: Optimized Mutation Scheduling for Fuzzers},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1949--1966},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/lyu},
publisher = {{USENIX} Association},
month = aug,
}
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022