This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Overview

Polygonal Building Segmentation by Frame Field Learning

We add a frame field output to an image segmentation neural network to improve segmentation quality and provide structural information for the subsequent polygonization step.


Figure 1: Close-up of our additional frame field output on a test image.



Figure 2: Given an overhead image, the model outputs an edge mask, an interior mask, and a frame field for buildings. The total loss includes terms that align the masks and frame field to ground truth data as well as regularizers to enforce smoothness of the frame field and consistency between the outputs.



Figure 3: Given classification maps and a frame field as input, we optimize skeleton polylines to align to the frame field using an Active Skeleton Model (ASM) and detect corners using the frame field, simplifying non-corner vertices.

This repository contains the official code for the paper:

Polygonal Building Segmentation by Frame Field Learning
Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka
Pre-print
[paper, video]

Whose short version has been published as:

Regularized Building Segmentation by Frame Field Learning
Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka
IGARSS 2020

Setup

Git submodules

This project uses various git submodules that should be cloned too.

To clone a repository including its submodules execute:

git clone --recursive --jobs 8 <URL to Git repo>

If you already have cloned the repository and now want to load it’s submodules execute:

git submodule update --init --recursive --jobs 8

or:

git submodule update --recursive

For more about explanations about using submodules and git, see SUBMODULES.md.

Docker

The easiest way to setup environment is to use the Docker image provided in the docker (see README inside the folder).

Once the docker container is built and launched, execute the setup.sh script inside to install required packages.

The environment in the container is now ready for use.

Conda environment

Alternatively you can install all dependencies in a conda environment. I provide my environment specifications in the environment.yml which you can use to create your environment own with:

conda env create -f environment.yml

Data

Several datasets are used in this work. We typically put all datasets in a "data" folder which we link to the "/data" folder in the container (with the -v argument when running the container). Each dataset has it's own sub-folder, usually named with a short version of that dataset's name. Each dataset sub-folder should have a "raw" folder inside containing all the original folders and files fo the datset. When pre-processing data, "processed" folders will be created alongside the "raw" folder.

For example, here is an example working file structure inside the container:

/data 
|-- AerialImageDataset
     |-- raw
         |-- train
         |   |-- aligned_gt_polygons_2
         |   |-- gt
         |   |-- gt_polygonized
         |   |-- images
         `-- test
             |-- aligned_gt_polygons_2
             |-- images
`-- mapping_challenge_dataset
     |-- raw
         |-- train
         |   |-- images
         |   |-- annotation.json
         |   `-- annotation-small.json
         `-- val
              `-- ...

If however you would like to use a different folder for the datasets (for example while not using Docker), you can change the path to datasets in config files. You can modify the "data_dir_candidates" list in the config to only include your path. The training script checks this list of paths one at a time and picks the first one that exists. It then appends the "data_root_partial_dirpath" directory to get to the dataset.

You can find some of the data we used in this shared "data" folder: https://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing.

Inria Aerial Image Labeling Dataset

Link to the dataset: https://project.inria.fr/aerialimagelabeling/

For the Inria dataset, the original ground truth is just a collection of raster masks. As our method requires annotations to be polygons in order to compute the ground truth angle for the frame field, we made 2 versions of the dataset:

The Inria OSM dataset has aligned annotations pulled from OpenStreetMap.

The Inria Polygonized dataset has polygon annotations obtained from using our frame field polygonization algorithm on the original raster masks. This was done by running the polygonize_mask.py script like so: python polygonize_mask.py --run_name inria_dataset_osm_mask_only.unet16 --filepath ~/data/AerialImageDataset/raw/train/gt/*.tif

You can find this new ground truth for both cases in the shared "data" folder (https://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing.).

Running the main.py script

Execute main.py script to train a model, test a model or use a model on your own image. See the help of the main script with:

python main.py --help

The script can be launched on multiple GPUs for multi-GPU training and evaluation. Simply set the --gpus argument to the number of gpus you want to use. However, for the first launch of the script on a particular dataset (when it will pre-process the data), it is best to leave it at 1 as I did not implement multi-GPU synchronization when pre-processing datasets.

An example use is for training a model with a certain config file, like so: python main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained which will train the Unet-Resnet101 on the CrowdAI Mapping Challenge dataset. The batch size can be adjusted like so: python main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained -b <new batch size>

When training is done, the script can be launched in eval mode, to evaluate the trained model: python main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained --mode eval. Depending on the eval parameters of the config file, running this will output results on the test dataset.

Finally, if you wish to compute AP and AR metrics with the COCO API, you can run: python main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained --mode eval_coco.

Launch inference on one image

Make sure the run folder has the correct structure:

Polygonization-by-Frame-Field-Learning
|-- frame_field_learning
|   |-- runs
|   |   |-- <run_name> | <yyyy-mm-dd hh:mm:ss>
|   |   `-- ...
|   |-- inference.py
|   `-- ...
|-- main.py
|-- README.md (this file)
`-- ...

Execute the [main.py] script like so (filling values for arguments run_name and in_filepath): python main.py --run_name <run_name> --in_filepath <your_image_filepath>

The outputs will be saved next to the input image

Download trained models

We provide already-trained models so you can run inference right away. Download here: https://drive.google.com/drive/folders/1poTQbpCz12ra22CsucF_hd_8dSQ1T3eT?usp=sharing. Each model was trained in a "run", whose folder (named with the format <run_name> | <yyyy-mm-dd hh:mm:ss>) you can download at the provided link. You should then place those runs in a folder named "runs" inside the "frame_field_learning" folder like so:

Polygonization-by-Frame-Field-Learning
|-- frame_field_learning
|   |-- runs
|   |   |-- inria_dataset_polygonized.unet_resnet101_pretrained.leaderboard | 2020-06-02 07:57:31
|   |   |-- mapping_dataset.unet_resnet101_pretrained.field_off.train_val | 2020-09-07 11:54:48
|   |   |-- mapping_dataset.unet_resnet101_pretrained.train_val | 2020-09-07 11:28:51
|   |   `-- ...
|   |-- inference.py
|   `-- ...
|-- main.py
|-- README.md (this file)
`-- ...

Because Google Drive reformats folder names, you have to rename the run folders as above.

Cite:

If you use this code for your own research, please cite

@InProceedings{Girard_2020_IGARSS,
  title = {{Regularized Building Segmentation by Frame Field Learning}},
  author = {Girard, Nicolas and Smirnov, Dmitriy and Solomon, Justin and Tarabalka, Yuliya},
  booktitle = {IEEE International Geoscience and Remote Sensing Symposium (IGARSS)},
  ADDRESS = {Waikoloa, Hawaii},
  year = {2020},
  month = Jul,
}

@misc{girard2020polygonal,
    title={Polygonal Building Segmentation by Frame Field Learning},
    author={Nicolas Girard and Dmitriy Smirnov and Justin Solomon and Yuliya Tarabalka},
    year={2020},
    eprint={2004.14875},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Nicolas Girard
Research engineer at LuxCarta with a PhD in deep learning applied to remote sensing.
Nicolas Girard
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023