Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

Overview

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

Alt text

Introduction

This is a PyTorch implementation of "SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training"

The paper propose a novel text detection system termed SelfText Beyond Polygon(SBP) with Bounding Box Supervision(BBS) and Dynamic Self Training~(DST), where training a polygon-based text detector with only a limited set of upright bounding box annotations. As shown in the Figure, SBP achieves the same performance as strong supervision while saving huge data annotation costs.

From more details,please refer to our arXiv paper

Environments

  • python 3
  • torch = 1.1.0
  • torchvision
  • Pillow
  • numpy

ToDo List

  • Release code(BBS)
  • Release code(DST)
  • Document for Installation
  • Document for testing and training
  • Evaluation
  • Demo script
  • re-organize and clean the parameters

Dataset

Supported:

  • ICDAR15
  • ICDAR17MLI
  • sythtext800K
  • TotalText
  • MSRA-TD500
  • CTW1500

model zoo

Supported text detection:

Bounding Box Supervision(BBS)

Train

The training strategy includes three steps: (1) training SASN with synthetic data (2) generating pseudo label on real data based on bounding box annotation with SASN (3) training the detectors(EAST and PSENet) with the pseudo label

training SASN with synthtext or curved synthtext

(TDB)

generating pseudo label on real data with SASN

(TDB)

training EAST or PSENet with the pseudo label

(TDB)

Eval

for example (batchsize=2)

(TDB)

Visualization

Dynamic Self Training

Train

(TDB)

Eval

for example (batchsize=2)

(TDB)

Visualization

Experiments

Bounding Box Supervision

The performance of EAST on ICDAR15

Method Dataset Pretrain precision recall f-score
EAST_box ICDAR15 - 65.8 63.8 64.8
EAST ICDAR15 - 76.9 77.1 77.0
EAST_pseudo(SynthText) ICDAR15 - 77.8 78.2 78.0
EAST_box ICDAR15 SynthText 70.8 72.0 71.4
EAST ICDAR15 SynthText 82.0 82.4 82.2
EAST_pseudo(SynthText) ICDAR15 SynthText 81.3 82.2 81.8

The performance of EAST on MSRA-TD500

Method Dataset Pretrain precision recall f-score
EAST_box MSRA-TD500 - 40.49 31.05 35.15
EAST MSRA-TD500 - 71.76 69.05 70.38
EAST_pseudo(SynthText) MSRA-TD500 - 71.27 67.54 69.36
EAST_box MSRA-TD500 SynthText 48.34 42.37 45.16
EAST MSRA-TD500 SynthText 77.91 76.45 77.17
EAST_pseudo(SynthText) MSRA-TD500 SynthText 77.42 73.85 75.59

The performance of PSENet on ICDAR15

Method Dataset Pretrain precision recall f-score
PSENet_box ICDAR15 - 70.17 69.09 69.63
PSENet ICDAR15 - 81.6 79.5 80.5
PSENet_pseudo(SynthText) ICDAR15 - 82.9 77.6 80.2
PSENet_box ICDAR15 SynthText 72.65 74.29 73.46
PSENet ICDAR15 SynthText 86.42 83.54 84.96
PSENet_pseudo(SynthText) ICDAR15 SynthText 86.77 83.34 85.02

The performance of PSENet on MSRA-TD500

Method Dataset Pretrain precision recall f-score
PSENet_box MSRA-TD500 - 47.17 36.90 41.41
PSENet MSRA-TD500 - 80.86 77.72 79.13
PSENet_pseudo(SynthText) MSRA-TD500 - 80.32 77.26 78.86
PSENet_box MSRA-TD500 SynthText 47.45 39.49 43.11
PSENet MSRA-TD500 SynthText 84.11 84.97 84.54
PSENet_pseudo(SynthText) MSRA-TD500 SynthText 84.03 84.03 84.03

The performance of PSENet on Total Text

Method Dataset Pretrain precision recall f-score
PSENet_box Total Text - 46.5 43.6 45.0
PSENet Total Text - 80.4 76.5 78.4
PSENet_pseudo(SynthText) Total Text - 80.33 73.54 76.78
PSENet_pseudo(Curved SynthText) Total Text - 81.68 74.61 78.0
PSENet_box Total Text SynthText 51.94 47.45 49.59
PSENet Total Text SynthText 83.4 78.1 80.7
PSENet_pseudo(SynthText) Total Text SynthText 81.57 75.54 78.44
PSENet_pseudo(Curved SynthText) Total Text SynthText 82.51 77.57 80.0

The visualization of bounding-box annotation and the pseudo labels generated by BBS on Total-Text The visualization of bounding-box annotation and the pseudo labels generated by BBS on Total-Text

links

https://github.com/SakuraRiven/EAST

https://github.com/WenmuZhou/PSENet.pytorch

License

For academic use, this project is licensed under the Apache License - see the LICENSE file for details. For commercial use, please contact the authors.

Citations

Please consider citing our paper in your publications if the project helps your research.

Eamil: [email protected]

Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023