Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Related tags

Deep Learninglsr
Overview

LSR: Learned Spatial Representations for Few-shot Talking-Head Synthesis

Official code release for LSR. For technical details, please refer to:

Learned Spatial Representations for Few-shot Talking Head Synthesis.
Moustafa Meshry, Saksham Suri, Larry S. Davis, Abhinav Shrivastava
In International Conference on Computer Vision (ICCV), 2021.

Paper | Project page | Video

If you find this code useful, please consider citing:

@inproceedings{meshry2021step,
  title = {Learned Spatial Representations for Few-shot Talking-Head Synthesis},
  author = {Meshry, Moustafa and
          Suri, Saksham and
          Davis, Larry S. and
          Shrivastava, Abhinav},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
  year = {2021}
}

Environment setup

The code was built using tensorflow 2.2.0, cuda 10.1.243, and cudnn v7.6.5, but should be compatible with more recent tensorflow releases and cuda versions. To set up a virtual environement for the code, follow the following instructions.

  • Create a new conda environment
conda create -n lsr python=3.6
  • Activate the lsr environment
conda activate lsr
  • Set up the prerequisites
pip install -r requirements.txt

Run a pre-trained model

  • Download our pretrained model and extract to ./_trained_models/meta_learning
  • To run the inference for a test identity, execute the following command:
python main.py \
    --train_dir=_trained_models/meta_learning \
    --run_mode=infer \
    --K=1 \
    --source_subject_dir=_datasets/sample_fsth_eval_subset_processed/train/id00017/OLguY5ofUrY/combined \
    --driver_subject_dir=_datasets/sample_fsth_eval_subset_processed/test/id00017/OLguY5ofUrY/combined \
    --few_shot_finetuning=false 

where --K specifies the number of few-shot inputs, --few_shot_finetuning specifies whether or not to fine-tune the meta-learned model using the the K-shot inputs, and --source_subject_dir and --driver_subject_dir specify the source identity and driver sequence data respectively. Each output image contains a tuple of 5 images represeting the following (concatenated along the width):

  • The input facial landmarks for the target view.
  • The output discrete layout of our model, visualized in RGB.
  • The oracle segmentation map using an off-the-shelf segmentation model (i.e. the pesuedo ground truth), visualized in RGB.
  • The final output of our model.
  • The ground truth image of the driver subject.

A sample tuple is shown below.

        Input landmarks             Output spatial map           Oracle segmentation                     Output                           Ground truth


Test data and pre-computed outupts

Our model is trained on the train split of the VoxCeleb2 dataset. The data used for evaluation is adopted from the "Few-Shot Adversarial Learning of Realistic Neural Talking Head Models" paper (Zakharov et. al, 2019), and can be downloaded from the link provided by the authors of the aforementioned paper.

The test data contains 1600 images of 50 test identities (not seen by the model during training). Each identity has 32 input frames + 32 hold-out frames. The K-shot inputs to the model are uniformly sampled from the 32 input set. If the subject finetuning is turned on, then the model is finetuned on the K-shot inputs. The 32 hold-out frames are never shown to the finetuned model. For more details about the test data, refer to the aforementioned paper (and our paper). To facilitate comparison to our method, we provide a link with our pre-computed outputs of the test subset for K={1, 4, 8, 32} and for both the subject-agnostic (meta-learned) and subject-finetuned models. For more details, please refer to the README file associated with the released outputs. Alternatively, you can run our pre-trained model on your own data or re-train our model by following the instructions for training, inference and dataset preparation.

Dataset pre-processing

The dataset preprocessing has the following steps:

  1. Facial landmark generation
  2. Face parsing
  3. Converting the VoxCeleb2 dataset to tfrecords (for training).

We provide details for each of these steps.

Facial Landmark Generation

  1. data_dir: Path to a directory containing data to be processed.
  2. output_dir: Path to the output directory where the processed data should be saved.
  3. k: Sampling rate for frames from video (Default is set to 10)
  4. mode: The mode can be set to images or videos depending on whether the input data is video files or already extracted frames.

Here are example commands that process the sample data provided with this repository:

Note: Make sure the folders only contain the videos or images that are to be processed.

  • Generate facial landmarks for sample VoxCeleb2 test videos.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_test_videos \
    --output_dir=_datasets/sample_test_videos_processed \
    --mode=videos

To process the full dev and test subsets of the VoxCeleb2 dataset, run the above command twice while setting the --data_dir to point to the downloaded dev and test splits respectively.

  • Generate facial landmarks for the train portion of the sample evaluation subset.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_fsth_eval_subset/train \
    --output_dir=_datasets/sample_fsth_eval_subset_processed/train \
    --mode=images
  • Generate facial landmarks for the test portion of the sample evaluation subset.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_fsth_eval_subset/test \
    --output_dir=_datasets/sample_fsth_eval_subset_processed/test \
    --mode images

To process the full evaluation subset, download the evaluation subset, and run the above commands on the train and test portions of it.

Facial Parsing

The facial parsing step generates the oracle segmentation maps. It uses face parser of the CelebAMask-HQ github repository

To set it up follow the instructions below, and refer to instructions in the CelebAMask-HQ github repository for guidance.

mkdir third_party
git clone https://github.com/switchablenorms/CelebAMask-HQ.git third_party
cp preprocessing/segmentation/* third_party/face_parsing/.

To process the sample data provided with this repository, run the following commands.

  • Generate oracle segmentations for sample VoxCeleb2 videos.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_test_videos_processed
  • Generate oracle segmentations for the train portion of the sample evaluation subset.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_fsth_eval_subset_processed/train
  • Generate oracle segmentations for the test portion of the sample evaluation subset.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_fsth_eval_subset_processed/test

Converting VoxCeleb2 to tfrecords.

To re-train our model, you'll need to export the VoxCeleb2 dataset to a TF-record format. After downloading the VoxCeleb2 dataset and generating the facial landmarks and segmentations for it, run the following commands to export them to tfrecods.

python data/export_voxceleb_to_tfrecords.py \
  --dataset_parent_dir=
   
     \
  --output_parent_dir=
    
      \
  --subset=dev \
  --num_shards=1000

    
   

For example, the command to convert the sample data provided with this repository is

python data/export_voxceleb_to_tfrecords.py \
  --dataset_parent_dir=_datasets/sample_fsth_eval_subset_processed \
  --output_parent_dir=_datasets/sample_fsth_eval_subset_processed/tfrecords \
  --subset=test \
  --num_shards=1

Training

Training consists of two stages: first, we bootstrap the training of the layout generator by training it to predict a segmentation map for the target view. Second, we turn off the semantic segmentation loss and train our full pipeline. Our code assumes the training data in a tfrecord format (see previous instructions for dataset preparation).

After you have generated the dev and test tfrecords of the VoxCeleb2 dataset, you can run the training as follows:

  • run the layout pre-training step: execute the following command
sh scripts/train_lsr_pretrain.sh
  • train the full pipeline: after the pre-training is complete, run the following command
sh scripts/train_lsr_meta_learning.sh

Please, refer to the training scripts for details about different training configurations and how to set the correct flags for your training data.

Owner
Moustafa Meshry
Moustafa Meshry
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023