Code for visualizing the loss landscape of neural nets

Overview

Visualizing the Loss Landscape of Neural Nets

This repository contains the PyTorch code for the paper

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein. Visualizing the Loss Landscape of Neural Nets. NIPS, 2018.

An interactive 3D visualizer for loss surfaces has been provided by telesens.

Given a network architecture and its pre-trained parameters, this tool calculates and visualizes the loss surface along random direction(s) near the optimal parameters. The calculation can be done in parallel with multiple GPUs per node, and multiple nodes. The random direction(s) and loss surface values are stored in HDF5 (.h5) files after they are produced.

Setup

Environment: One or more multi-GPU node(s) with the following software/libraries installed:

Pre-trained models: The code accepts pre-trained PyTorch models for the CIFAR-10 dataset. To load the pre-trained model correctly, the model file should contain state_dict, which is saved from the state_dict() method. The default path for pre-trained networks is cifar10/trained_nets. Some of the pre-trained models and plotted figures can be downloaded here:

Data preprocessing: The data pre-processing method used for visualization should be consistent with the one used for model training. No data augmentation (random cropping or horizontal flipping) is used in calculating the loss values.

Visualizing 1D loss curve

Creating 1D linear interpolations

The 1D linear interpolation method [1] evaluates the loss values along the direction between two minimizers of the same network loss function. This method has been used to compare the flatness of minimizers trained with different batch sizes [2]. A 1D linear interpolation plot is produced using the plot_surface.py method.

mpirun -n 4 python plot_surface.py --mpi --cuda --model vgg9 --x=-0.5:1.5:401 --dir_type states \
--model_file cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=128_wd=0.0_save_epoch=1/model_300.t7 \
--model_file2 cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=8192_wd=0.0_save_epoch=1/model_300.t7 --plot
  • --x=-0.5:1.5:401 sets the range and resolution for the plot. The x-coordinates in the plot will run from -0.5 to 1.5 (the minimizers are located at 0 and 1), and the loss value will be evaluated at 401 locations along this line.
  • --dir_type states indicates the direction contains dimensions for all parameters as well as the statistics of the BN layers (running_mean and running_var). Note that ignoring running_mean and running_var cannot produce correct loss values when plotting two solutions togeather in the same figure.
  • The two model files contain network parameters describing the two distinct minimizers of the loss function. The plot will interpolate between these two minima.

VGG-9 SGD, WD=0

Producing plots along random normalized directions

A random direction with the same dimension as the model parameters is created and "filter normalized." Then we can sample loss values along this direction.

mpirun -n 4 python plot_surface.py --mpi --cuda --model vgg9 --x=-1:1:51 \
--model_file cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=128_wd=0.0_save_epoch=1/model_300.t7 \
--dir_type weights --xnorm filter --xignore biasbn --plot
  • --dir_type weights indicates the direction has the same dimensions as the learned parameters, including bias and parameters in the BN layers.
  • --xnorm filter normalizes the random direction at the filter level. Here, a "filter" refers to the parameters that produce a single feature map. For fully connected layers, a "filter" contains the weights that contribute to a single neuron.
  • --xignore biasbn ignores the direction corresponding to bias and BN parameters (fill the corresponding entries in the random vector with zeros).

VGG-9 SGD, WD=0

We can also customize the appearance of the 1D plots by calling plot_1D.py once the surface file is available.

Visualizing 2D loss contours

To plot the loss contours, we choose two random directions and normalize them in the same way as the 1D plotting.

mpirun -n 4 python plot_surface.py --mpi --cuda --model resnet56 --x=-1:1:51 --y=-1:1:51 \
--model_file cifar10/trained_nets/resnet56_sgd_lr=0.1_bs=128_wd=0.0005/model_300.t7 \
--dir_type weights --xnorm filter --xignore biasbn --ynorm filter --yignore biasbn  --plot

ResNet-56

Once a surface is generated and stored in a .h5 file, we can produce and customize a contour plot using the script plot_2D.py.

python plot_2D.py --surf_file path_to_surf_file --surf_name train_loss
  • --surf_name specifies the type of surface. The default choice is train_loss,
  • --vmin and --vmax sets the range of values to be plotted.
  • --vlevel sets the step of the contours.

Visualizing 3D loss surface

plot_2D.py can make a basic 3D loss surface plot with matplotlib. If you want a more detailed rendering that uses lighting to display details, you can render the loss surface with ParaView.

ResNet-56-noshort ResNet-56

To do this, you must

  1. Convert the surface .h5 file to a .vtp file.
python h52vtp.py --surf_file path_to_surf_file --surf_name train_loss --zmax  10 --log

This will generate a VTK file containing the loss surface with max value 10 in the log scale.

  1. Open the .vtp file with ParaView. In ParaView, open the .vtp file with the VTK reader. Click the eye icon in the Pipeline Browser to make the figure show up. You can drag the surface around, and change the colors in the Properties window.

  2. If the surface appears extremely skinny and needle-like, you may need to adjust the "transforming" parameters in the left control panel. Enter numbers larger than 1 in the "scale" fields to widen the plot.

  3. Select Save screenshot in the File menu to save the image.

Reference

[1] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network optimization problems. ICLR, 2015.

[2] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017.

Citation

If you find this code useful in your research, please cite:

@inproceedings{visualloss,
  title={Visualizing the Loss Landscape of Neural Nets},
  author={Li, Hao and Xu, Zheng and Taylor, Gavin and Studer, Christoph and Goldstein, Tom},
  booktitle={Neural Information Processing Systems},
  year={2018}
}
Owner
Tom Goldstein
Tom Goldstein
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022