Improving adversarial robustness by a coupling rejection strategy

Overview

Adversarial Training with Rectified Rejection

The code for the paper Adversarial Training with Rectified Rejection.

Environment settings and libraries we used in our experiments

This project is tested under the following environment settings:

  • OS: Ubuntu 18.04.4
  • GPU: Geforce 2080 Ti or Tesla P100
  • Cuda: 10.1, Cudnn: v7.6
  • Python: 3.6
  • PyTorch: >= 1.6.0
  • Torchvision: >= 0.6.0

Acknowledgement

The codes are modifed based on Rice et al. 2020, and the model architectures are implemented by pytorch-cifar.

Training Commands

Below we provide running commands training the models with the RR module, taking the setting of PGD-AT + RR (ResNet-18) as an example:

python train_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --attack pgd --lr-schedule piecewise \
                                              --epochs 110 --epsilon 8 \
                                              --attack-iters 10 --pgd-alpha 2 \
                                              --fname auto \
                                              --batch-size 128 \
                                              --adaptivetrain --adaptivetrainlambda 1.0 \
                                              --weight_decay 5e-4 \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --dataset 'CIFAR-10' \
                                              --ATframework 'PGDAT' \
                                              --SGconfidenceW

The FLAG --model_name can be PreActResNet18_twobranch_DenseV1 (ResNet-18) or WideResNet_twobranch_DenseV1 (WRN-34-10). For alternating different AT frameworks, we can set the FLAG --ATframework to be one of PGDAT, TRADES, CCAT.

Evaluation Commands

Below we provide running commands for evaluations.

Evaluating under the PGD attacks

The trained model is saved at trained_models/model_path, where the specific name of model_path is automatically generated during training. The command for evaluating under PGD attacks is:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 1000 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate

Evaluating under the adaptive CW attacks

The parameter FLAGs --binary_search_steps, --CW_iter, --CW_confidence can be changed, where --detectmetric indicates the rejector that needs to be adaptively evaded.

python eval_cifar_CW.py --model_name PreActResNet18_twobranch_DenseV1 --evalset adaptiveCWtest \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 --seed 2020 \
                                              --binary_search_steps 9 --CW_iter 100 --CW_confidence 0 \
                                              --threatmodel linf --reportmodel linf \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --detectmetric 'RR' \
                                              --dataset 'CIFAR-10'

Evaluating under multi-target and GAMA attacks

The running command for evaluating under multi-target attacks is activated by the FLAG --evalonMultitarget as:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 100 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --evalonMultitarget --restarts 1

The running command for evaluating under GAMA attacks is activated by the FLAG --evalonGAMA_PGD or --evalonGAMA_FW as:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 100 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --evalonGAMA_FW

Evaluating under CIFAR-10-C

The running command for evaluating on common corruptions in CIFAR-10-C is:

python eval_cifar_CIFAR10-C.py --model_name PreActResNet18_twobranch_DenseV1 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate
Owner
Tianyu Pang
Ph.D. Student (Machine Learning)
Tianyu Pang
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023