Improving adversarial robustness by a coupling rejection strategy

Overview

Adversarial Training with Rectified Rejection

The code for the paper Adversarial Training with Rectified Rejection.

Environment settings and libraries we used in our experiments

This project is tested under the following environment settings:

  • OS: Ubuntu 18.04.4
  • GPU: Geforce 2080 Ti or Tesla P100
  • Cuda: 10.1, Cudnn: v7.6
  • Python: 3.6
  • PyTorch: >= 1.6.0
  • Torchvision: >= 0.6.0

Acknowledgement

The codes are modifed based on Rice et al. 2020, and the model architectures are implemented by pytorch-cifar.

Training Commands

Below we provide running commands training the models with the RR module, taking the setting of PGD-AT + RR (ResNet-18) as an example:

python train_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --attack pgd --lr-schedule piecewise \
                                              --epochs 110 --epsilon 8 \
                                              --attack-iters 10 --pgd-alpha 2 \
                                              --fname auto \
                                              --batch-size 128 \
                                              --adaptivetrain --adaptivetrainlambda 1.0 \
                                              --weight_decay 5e-4 \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --dataset 'CIFAR-10' \
                                              --ATframework 'PGDAT' \
                                              --SGconfidenceW

The FLAG --model_name can be PreActResNet18_twobranch_DenseV1 (ResNet-18) or WideResNet_twobranch_DenseV1 (WRN-34-10). For alternating different AT frameworks, we can set the FLAG --ATframework to be one of PGDAT, TRADES, CCAT.

Evaluation Commands

Below we provide running commands for evaluations.

Evaluating under the PGD attacks

The trained model is saved at trained_models/model_path, where the specific name of model_path is automatically generated during training. The command for evaluating under PGD attacks is:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 1000 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate

Evaluating under the adaptive CW attacks

The parameter FLAGs --binary_search_steps, --CW_iter, --CW_confidence can be changed, where --detectmetric indicates the rejector that needs to be adaptively evaded.

python eval_cifar_CW.py --model_name PreActResNet18_twobranch_DenseV1 --evalset adaptiveCWtest \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 --seed 2020 \
                                              --binary_search_steps 9 --CW_iter 100 --CW_confidence 0 \
                                              --threatmodel linf --reportmodel linf \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --detectmetric 'RR' \
                                              --dataset 'CIFAR-10'

Evaluating under multi-target and GAMA attacks

The running command for evaluating under multi-target attacks is activated by the FLAG --evalonMultitarget as:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 100 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --evalonMultitarget --restarts 1

The running command for evaluating under GAMA attacks is activated by the FLAG --evalonGAMA_PGD or --evalonGAMA_FW as:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 100 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --evalonGAMA_FW

Evaluating under CIFAR-10-C

The running command for evaluating on common corruptions in CIFAR-10-C is:

python eval_cifar_CIFAR10-C.py --model_name PreActResNet18_twobranch_DenseV1 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate
Owner
Tianyu Pang
Ph.D. Student (Machine Learning)
Tianyu Pang
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022