This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

Overview

bayesian_uncertainty

This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

In this project I build a statistical inference machine for classifying gene expressions in high-dimensional genome datasets. This is from my position as research assistant at the Azizi Lab for Computational Cancer Biology at Columbia University. Work done in the Google Cloud Platform running PyTorch. The dataset (cells of the adult human heart) contains 18641 cells, each with 26662 genes, totaling ~497 million data points. Implements VAE's to denoise and unpack uncertainty in the gene expression levels of each gene and each gene group.

VAEBatchEnsemble.py implements HyperBatchEnsemble on a Tensorflow Convolutional VAE to test the baseline effectiveness of HBE on a vanilla VAE. SCVI BatchEnsemble.ipynb is a beginning notebook for implementing HBE on the SCVI VAE. Source code for HBE from Uncertainty Baselines. Expression_Tests.ipynb runs sampling on 9 gene markets from the fibroblast, smooth muscle, and myeloid cell groups from SCVI training data. Key results from Expression_Tests are shown in SCVI Experimentation.PDF. Plots reveal behavior of these key gene markers over many initializations of SCVI. SCVI training data for 36 initializations found on Azizi Lab GCP: instances/detests (https://console.cloud.google.com/ai-platform/notebooks/list/instances?project=azizilab-aml). Statistics.ipynb shows further summary statistics for the 9 key gene markers.

High level overview of HBE as a method is included in BatchEnsemble Overview. For details: @MaxDGU

Hyper BatchEnsemble Paper: https://arxiv.org/abs/2006.13570 HBE Code: https://github.com/google/uncertainty-baselines SCVI paper: https://www.nature.com/articles/s41592-018-0229-2.epdf?author_access_token=5sMbnZl1iBFitATlpKkddtRgN0jAjWel9jnR3ZoTv0P1-tTjoP-mBfrGiMqpQx63aBtxToJssRfpqQ482otMbBw2GIGGeinWV4cULBLPg4L4DpCg92dEtoMaB1crCRDG7DgtNrM_1j17VfvHfoy1cQ%3D%3D SCVI Code: https://github.com/YosefLab/scvi-tools

Owner
Max David Gupta
Projects with musical, linguistic, and genetic data
Max David Gupta
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
113 Nov 28, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022