===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Contact: [email protected] Description: This project is a personal implementation of an algorithm called PATCHMATCH that restores missing areas in an image. The algorithm is presented in the following paper PatchMatch A Randomized Correspondence Algorithm for Structural Image Editing by C.Barnes,E.Shechtman,A.Finkelstein and Dan B.Goldman ACM Transactions on Graphics (Proc. SIGGRAPH), vol.28, aug-2009 For more information please refer to http://www.cs.princeton.edu/gfx/pubs/Barnes_2009_PAR/index.php Copyright (c) 2010-2011 Requirements ============ To run the project you need to install Opencv library and link it to your project. Opencv can be download it here http://opencv.org/downloads.html How to use =========== The project accepts two images 1- The original image 2- The pruned image you can delete a part of interest in the image. The algorithm will patch the remaining image to give a natural result. The project contains some example of images to try it. You may find them in image_files. After choosing the image file, enter the paths of those image files in main.c char fileNameInput[50] = YOUR_PATH_HERE_OF_ORIGINAL_IMAGE; char fileNameMasked[50] = YOUR_PATH_HERE_OF_PRUNED_IMAGE; Enjoy!!
Randomized Correspondence Algorithm for Structural Image Editing
Overview
Optimize Trading Strategies Using Freqtrade
Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube
Anagram Generator in Python
Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution
TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)
Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!
Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)
GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G
Vehicle Detection Using Deep Learning and YOLO Algorithm
VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu
An SE(3)-invariant autoencoder for generating the periodic structure of materials
Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction
AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.
MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla
Unofficial Pytorch Implementation of WaveGrad2
WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data
A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi
Attention Probe: Vision Transformer Distillation in the Wild
Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is
This tutorial repository is to introduce the functionality of KGTK to first-time users
Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)
Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca
D2Go is a toolkit for efficient deep learning
D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W
Collection of Docker images for ML/DL and video processing projects
Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with
maximal update parametrization (µP)
Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks