An SE(3)-invariant autoencoder for generating the periodic structure of materials

Related tags

Deep Learningcdvae
Overview

Crystal Diffusion Variational AutoEncoder

This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic structure of materials.

It has several main functionalities:

  • Generate novel, stable materials by learning from a dataset containing existing material structures.
  • Generate materials by optimizing a specific property in the latent space, i.e. inverse design.

[Paper] [Datasets]

Table of Contents

Installation

The easiest way to install prerequisites is via conda.

Pre-install step

Install conda-merge:

pip install conda-merge

Check that you can invoke conda-merge by running conda-merge -h.

GPU machines

Run the following command to install the environment:

conda-merge env.common.yml env.gpu.yml > env.yml
conda env create -f env.yml

Activate the conda environment with conda activate cdvae.

Install this package with pip install -e ..

CPU-only machines

conda-merge env.common.yml env.cpu.yml > env.yml
conda env create -f env.yml
conda activate cdvae
pip install -e .

Setting up environment variables

Make a copy of the .env.template file and rename it to .env. Modify the following environment variables in .env.

  • PROJECT_ROOT: path to the folder that contains this repo
  • HYDRA_JOBS: path to a folder to store hydra outputs
  • WABDB: path to a folder to store wabdb outputs

Datasets

All datasets are directly available on data/ with train/valication/test splits. You don't need to download them again. If you use these datasets, please consider to cite the original papers from which we curate these datasets.

Find more about these datasets by going to our Datasets page.

Training CDVAE

Training without a property predictor

To train a CDVAE, run the following command:

python cdvae/run.py data=perov expname=perov

To use other datasets, use data=carbon and data=mp_20 instead. CDVAE uses hydra to configure hyperparameters, and users can modify them with the command line or configure files in conf/ folder.

After training, model checkpoints can be found in $HYDRA_JOBS/singlerun/YYYY-MM-DD/expname.

Training with a property predictor

Users can also additionally train an MLP property predictor on the latent space, which is needed for the property optimization task:

python cdvae/run.py data=perov expname=perov model.predict_property=True

The name of the predicted propery is defined in data.prop, as in conf/data/perov.yaml for Perov-5.

Generating materials

To generate materials, run the following command:

python scripts/evaluate.py --model_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. Users can choose one or several of the 3 tasks:

  • recon: reconstruction, reconstructs all materials in the test data. Outputs can be found in eval_recon.ptl
  • gen: generate new material structures by sampling from the latent space. Outputs can be found in eval_gen.pt.
  • opt: generate new material strucutre by minimizing the trained property in the latent space (requires model.predict_property=True). Outputs can be found in eval_opt.pt.

eval_recon.pt, eval_gen.pt, eval_opt.pt are pytorch pickles files containing multiple tensors that describes the structures of M materials batched together. Each material can have different number of atoms, and we assume there are in total N atoms. num_evals denote the number of Langevin dynamics we perform for each material.

  • frac_coords: fractional coordinates of each atom, shape (num_evals, N, 3)
  • atom_types: atomic number of each atom, shape (num_evals, N)
  • lengths: the lengths of the lattice, shape (num_evals, M, 3)
  • angles: the angles of the lattice, shape (num_evals, M, 3)
  • num_atoms: the number of atoms in each material, shape (num_evals, M)

Evaluating model

To compute evaluation metrics, run the following command:

python scripts/compute_metrics.py --root_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. All evaluation metrics will be saved in eval_metrics.json.

Authors and acknowledgements

The software is primary written by Tian Xie, with signficant contributions from Xiang Fu.

The GNN codebase and many utility functions are adapted from the ocp-models by the Open Catalyst Project. Especially, the GNN implementations of DimeNet++ and GemNet are used.

The main structure of the codebase is built from NN Template.

For the datasets, Perov-5 is curated from Perovksite water-splitting, Carbon-24 is curated from AIRSS data for carbon at 10GPa, MP-20 is curated from Materials Project.

Citation

Please consider citing the following paper if you find our code & data useful.

@article{xie2021crystal,
  title={Crystal Diffusion Variational Autoencoder for Periodic Material Generation},
  author={Xie, Tian and Fu, Xiang and Ganea, Octavian-Eugen and Barzilay, Regina and Jaakkola, Tommi},
  journal={arXiv preprint arXiv:2110.06197},
  year={2021}
}

Contact

Please leave an issue or reach out to Tian Xie (txie AT csail DOT mit DOT edu) if you have any questions.

Owner
Tian Xie
Postdoc at MIT CSAIL. Machine learning algorithms for materials, drugs, and beyond.
Tian Xie
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022