An SE(3)-invariant autoencoder for generating the periodic structure of materials

Related tags

Deep Learningcdvae
Overview

Crystal Diffusion Variational AutoEncoder

This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic structure of materials.

It has several main functionalities:

  • Generate novel, stable materials by learning from a dataset containing existing material structures.
  • Generate materials by optimizing a specific property in the latent space, i.e. inverse design.

[Paper] [Datasets]

Table of Contents

Installation

The easiest way to install prerequisites is via conda.

Pre-install step

Install conda-merge:

pip install conda-merge

Check that you can invoke conda-merge by running conda-merge -h.

GPU machines

Run the following command to install the environment:

conda-merge env.common.yml env.gpu.yml > env.yml
conda env create -f env.yml

Activate the conda environment with conda activate cdvae.

Install this package with pip install -e ..

CPU-only machines

conda-merge env.common.yml env.cpu.yml > env.yml
conda env create -f env.yml
conda activate cdvae
pip install -e .

Setting up environment variables

Make a copy of the .env.template file and rename it to .env. Modify the following environment variables in .env.

  • PROJECT_ROOT: path to the folder that contains this repo
  • HYDRA_JOBS: path to a folder to store hydra outputs
  • WABDB: path to a folder to store wabdb outputs

Datasets

All datasets are directly available on data/ with train/valication/test splits. You don't need to download them again. If you use these datasets, please consider to cite the original papers from which we curate these datasets.

Find more about these datasets by going to our Datasets page.

Training CDVAE

Training without a property predictor

To train a CDVAE, run the following command:

python cdvae/run.py data=perov expname=perov

To use other datasets, use data=carbon and data=mp_20 instead. CDVAE uses hydra to configure hyperparameters, and users can modify them with the command line or configure files in conf/ folder.

After training, model checkpoints can be found in $HYDRA_JOBS/singlerun/YYYY-MM-DD/expname.

Training with a property predictor

Users can also additionally train an MLP property predictor on the latent space, which is needed for the property optimization task:

python cdvae/run.py data=perov expname=perov model.predict_property=True

The name of the predicted propery is defined in data.prop, as in conf/data/perov.yaml for Perov-5.

Generating materials

To generate materials, run the following command:

python scripts/evaluate.py --model_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. Users can choose one or several of the 3 tasks:

  • recon: reconstruction, reconstructs all materials in the test data. Outputs can be found in eval_recon.ptl
  • gen: generate new material structures by sampling from the latent space. Outputs can be found in eval_gen.pt.
  • opt: generate new material strucutre by minimizing the trained property in the latent space (requires model.predict_property=True). Outputs can be found in eval_opt.pt.

eval_recon.pt, eval_gen.pt, eval_opt.pt are pytorch pickles files containing multiple tensors that describes the structures of M materials batched together. Each material can have different number of atoms, and we assume there are in total N atoms. num_evals denote the number of Langevin dynamics we perform for each material.

  • frac_coords: fractional coordinates of each atom, shape (num_evals, N, 3)
  • atom_types: atomic number of each atom, shape (num_evals, N)
  • lengths: the lengths of the lattice, shape (num_evals, M, 3)
  • angles: the angles of the lattice, shape (num_evals, M, 3)
  • num_atoms: the number of atoms in each material, shape (num_evals, M)

Evaluating model

To compute evaluation metrics, run the following command:

python scripts/compute_metrics.py --root_path MODEL_PATH --tasks recon gen opt

MODEL_PATH will be the path to the trained model. All evaluation metrics will be saved in eval_metrics.json.

Authors and acknowledgements

The software is primary written by Tian Xie, with signficant contributions from Xiang Fu.

The GNN codebase and many utility functions are adapted from the ocp-models by the Open Catalyst Project. Especially, the GNN implementations of DimeNet++ and GemNet are used.

The main structure of the codebase is built from NN Template.

For the datasets, Perov-5 is curated from Perovksite water-splitting, Carbon-24 is curated from AIRSS data for carbon at 10GPa, MP-20 is curated from Materials Project.

Citation

Please consider citing the following paper if you find our code & data useful.

@article{xie2021crystal,
  title={Crystal Diffusion Variational Autoencoder for Periodic Material Generation},
  author={Xie, Tian and Fu, Xiang and Ganea, Octavian-Eugen and Barzilay, Regina and Jaakkola, Tommi},
  journal={arXiv preprint arXiv:2110.06197},
  year={2021}
}

Contact

Please leave an issue or reach out to Tian Xie (txie AT csail DOT mit DOT edu) if you have any questions.

Owner
Tian Xie
Postdoc at MIT CSAIL. Machine learning algorithms for materials, drugs, and beyond.
Tian Xie
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
LBK 35 Dec 26, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022