Analyses of the individual electric field magnitudes with Roast.

Overview

Aloi Davide - PhD Student (UoB)

Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal Modelling (DCM) results.

The goal of these analyses is to establish whether there is a relationship between single-subject electric field (E-field) magnitudes generated with the ROAST pipeline (Huang et al., 2019) and changes in effective connectivity within the motor network, derived using DCM and parametric empirical bayes (PEB).

The two analyses are:

  1. Correlation analysis between E-field magnitude - medians and max values - (or the current density?) in the motor cortex (M1) and Thalamus (Th) with self- / between-connectivities (M1 and Th only?) as derived from the DCM. e.g. Indahlastari et al. (2021). At the moment I am correlating e-field measures only with DCM measures derived from the contrast pre vs post Day-1 anodal only. However, I should also correlate those e-field measures with DCM measures derived from the contrast pre vs post Day-1 sham. I expect to find correlations between e-field measures and DCM measures for the anodal condition but not for sham.
  2. Pattern-recognition analysis using support vector machine (SVM) learning algorithm on MRI-derived tDCS current models to provide classification of tDCS treatment response (as reflected by increased M1-TH or TH-M1 connectivity or whatever other measure we decide). e.g. Albizu et al. (2020). The question here is: can we classify people who had an increase in thalamo-cortical connectivity using features from the MRI-current models?

The two analyses require similar preprocessing steps. Here's the list of the steps I've done and the respective scripts.

WP2A: I start from a dataset containing 22 folders (one per participant), each containing a T1 and a T2 scan (except for subject 16 who has only a T1).

  1. Renaming of anatomical scans: this renames the anatomical scans of each participant (i.e. sub-01_T1.nii etc).
  2. ROAST simulations: this script runs the ROAST simulations. In brief, ROAST outputs the following scans for each subject, while also using SPM routines for tissue segmentation: Voltage ("subjName_simulationTag_v.nii", unit in mV), E-field ("subjName_simulationTag_e.nii", unit in V/m) and E-field magnitude ("subjName_simulationTag_emag.nii", unit in V/m). The settings I have used for the simulation are: (t1, {'C3',1.0,'Fp2',-1.0},'T2', t2,'electype', 'pad', 'elecsize', [50 50 3], 'capType', '1020').
  3. Post ROAST preprocessing: ROAST outputs are in the ROAST model space. This script moves the results back to the MRI space, coregisters and normalises the electric field maps generated by ROAST. The script also normalise the T1 scan and all the masks.
  4. Ep values extraction from PEB result (Day-1 only): this script, starting from this .mat structure containing 66 PEBs (1 per participant / polarity), extracts the Ep values for each participant. The resulting file contains 66 matrices (participant 1 anodal, cathodal and sham, participant 2 ... 22).
  5. Estimation of posterior probability associated to each PEB extracted above. The script runs bayesian model averages for each PEB using the DCM function spm_dcm_peb_bmc. Results are saved in this .mat structure and used later on in the analyses to exclude connections with a posterior probability lower than 75%.
  6. WP2a e-magnitude measures estimation and correlation analysis. Steps:
    1. Load MNI template and M1/Th ROIs.
    2. Load .mat structure with Ep values and .mat structure with Pp values (Nb. Pp values are not used anymore);
    3. For each subject:
      1. Load normalised scan containing E-field magnitude (wsub-T1_emag.nii), normalised CSF, white and grey matter maps (wc1-2-3sub*.nii).
      2. Save DCM values related to the connections M1-M1, Th-Th, M1->Th and Th-> M1;
      3. Smooth E-field magnitude map using FWHM (4mm kernel);
      4. Mask E-field magnitude map with MNI template to exclude values outside the brain (useless if I then mask with CSF, wm and gm maps or with the M1/Th ROIs);
      5. Mask E-field magnitude map with M1 and Th ROIs and estimate means, medians and max electric-field values within the two ROIs;
      6. Save electric-field magnitude derived measures;
      7. Plot smoothed E-field magnitude map;
      8. Run 16 correlations: 4 DCM measures and 4 E-field measures (medians and max values).
      9. Plot correlations.

Questions:

  1. Electric field magnitudes or current densities?
  2. If so, how to deal with probabilistic masks?
  3. Should I threshold WM masks and apply binary erosion to remove the overlap between WM and GM?
  4. How to deal with Ep values which corresponding Pp is lower than our threshold (75%?)
  5. Should I mask out CSF tissue? Should I use a binary map containing only WM and GM?
  6. Hypotheses? Ideas?

Plots: Sticky note mind map - Sticky note mind map

References:

  1. Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. Journal of Neural Engineering, 16(5), 056006. https://doi.org/10.1088/1741-2552/ab208d
  2. Indahlastari, A., Albizu, A., Kraft, J. N., O’Shea, A., Nissim, N. R., Dunn, A. L., Carballo, D., Gordon, M. P., Taank, S., Kahn, A. T., Hernandez, C., Zucker, W. M., & Woods, A. J. (2021). Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults. Brain Stimulation, 14(5), 1205–1215. https://doi.org/10.1016/j.brs.2021.08.003
  3. Albizu, A., Fang, R., Indahlastari, A., O’Shea, A., Stolte, S. E., See, K. B., Boutzoukas, E. M., Kraft, J. N., Nissim, N. R., & Woods, A. J. (2020). Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimulation, 13(6), 1753–1764. https://doi.org/10.1016/j.brs.2020.10.001
Owner
Davide Aloi
Doctoral Researcher at the University of Birmingham, UK. Centre for Human Brain Health. Investigating Disorders of Consciousness with fMRI and tDCS.
Davide Aloi
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022