Analyses of the individual electric field magnitudes with Roast.

Overview

Aloi Davide - PhD Student (UoB)

Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal Modelling (DCM) results.

The goal of these analyses is to establish whether there is a relationship between single-subject electric field (E-field) magnitudes generated with the ROAST pipeline (Huang et al., 2019) and changes in effective connectivity within the motor network, derived using DCM and parametric empirical bayes (PEB).

The two analyses are:

  1. Correlation analysis between E-field magnitude - medians and max values - (or the current density?) in the motor cortex (M1) and Thalamus (Th) with self- / between-connectivities (M1 and Th only?) as derived from the DCM. e.g. Indahlastari et al. (2021). At the moment I am correlating e-field measures only with DCM measures derived from the contrast pre vs post Day-1 anodal only. However, I should also correlate those e-field measures with DCM measures derived from the contrast pre vs post Day-1 sham. I expect to find correlations between e-field measures and DCM measures for the anodal condition but not for sham.
  2. Pattern-recognition analysis using support vector machine (SVM) learning algorithm on MRI-derived tDCS current models to provide classification of tDCS treatment response (as reflected by increased M1-TH or TH-M1 connectivity or whatever other measure we decide). e.g. Albizu et al. (2020). The question here is: can we classify people who had an increase in thalamo-cortical connectivity using features from the MRI-current models?

The two analyses require similar preprocessing steps. Here's the list of the steps I've done and the respective scripts.

WP2A: I start from a dataset containing 22 folders (one per participant), each containing a T1 and a T2 scan (except for subject 16 who has only a T1).

  1. Renaming of anatomical scans: this renames the anatomical scans of each participant (i.e. sub-01_T1.nii etc).
  2. ROAST simulations: this script runs the ROAST simulations. In brief, ROAST outputs the following scans for each subject, while also using SPM routines for tissue segmentation: Voltage ("subjName_simulationTag_v.nii", unit in mV), E-field ("subjName_simulationTag_e.nii", unit in V/m) and E-field magnitude ("subjName_simulationTag_emag.nii", unit in V/m). The settings I have used for the simulation are: (t1, {'C3',1.0,'Fp2',-1.0},'T2', t2,'electype', 'pad', 'elecsize', [50 50 3], 'capType', '1020').
  3. Post ROAST preprocessing: ROAST outputs are in the ROAST model space. This script moves the results back to the MRI space, coregisters and normalises the electric field maps generated by ROAST. The script also normalise the T1 scan and all the masks.
  4. Ep values extraction from PEB result (Day-1 only): this script, starting from this .mat structure containing 66 PEBs (1 per participant / polarity), extracts the Ep values for each participant. The resulting file contains 66 matrices (participant 1 anodal, cathodal and sham, participant 2 ... 22).
  5. Estimation of posterior probability associated to each PEB extracted above. The script runs bayesian model averages for each PEB using the DCM function spm_dcm_peb_bmc. Results are saved in this .mat structure and used later on in the analyses to exclude connections with a posterior probability lower than 75%.
  6. WP2a e-magnitude measures estimation and correlation analysis. Steps:
    1. Load MNI template and M1/Th ROIs.
    2. Load .mat structure with Ep values and .mat structure with Pp values (Nb. Pp values are not used anymore);
    3. For each subject:
      1. Load normalised scan containing E-field magnitude (wsub-T1_emag.nii), normalised CSF, white and grey matter maps (wc1-2-3sub*.nii).
      2. Save DCM values related to the connections M1-M1, Th-Th, M1->Th and Th-> M1;
      3. Smooth E-field magnitude map using FWHM (4mm kernel);
      4. Mask E-field magnitude map with MNI template to exclude values outside the brain (useless if I then mask with CSF, wm and gm maps or with the M1/Th ROIs);
      5. Mask E-field magnitude map with M1 and Th ROIs and estimate means, medians and max electric-field values within the two ROIs;
      6. Save electric-field magnitude derived measures;
      7. Plot smoothed E-field magnitude map;
      8. Run 16 correlations: 4 DCM measures and 4 E-field measures (medians and max values).
      9. Plot correlations.

Questions:

  1. Electric field magnitudes or current densities?
  2. If so, how to deal with probabilistic masks?
  3. Should I threshold WM masks and apply binary erosion to remove the overlap between WM and GM?
  4. How to deal with Ep values which corresponding Pp is lower than our threshold (75%?)
  5. Should I mask out CSF tissue? Should I use a binary map containing only WM and GM?
  6. Hypotheses? Ideas?

Plots: Sticky note mind map - Sticky note mind map

References:

  1. Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. Journal of Neural Engineering, 16(5), 056006. https://doi.org/10.1088/1741-2552/ab208d
  2. Indahlastari, A., Albizu, A., Kraft, J. N., O’Shea, A., Nissim, N. R., Dunn, A. L., Carballo, D., Gordon, M. P., Taank, S., Kahn, A. T., Hernandez, C., Zucker, W. M., & Woods, A. J. (2021). Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults. Brain Stimulation, 14(5), 1205–1215. https://doi.org/10.1016/j.brs.2021.08.003
  3. Albizu, A., Fang, R., Indahlastari, A., O’Shea, A., Stolte, S. E., See, K. B., Boutzoukas, E. M., Kraft, J. N., Nissim, N. R., & Woods, A. J. (2020). Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimulation, 13(6), 1753–1764. https://doi.org/10.1016/j.brs.2020.10.001
Owner
Davide Aloi
Doctoral Researcher at the University of Birmingham, UK. Centre for Human Brain Health. Investigating Disorders of Consciousness with fMRI and tDCS.
Davide Aloi
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022