Analyses of the individual electric field magnitudes with Roast.

Overview

Aloi Davide - PhD Student (UoB)

Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal Modelling (DCM) results.

The goal of these analyses is to establish whether there is a relationship between single-subject electric field (E-field) magnitudes generated with the ROAST pipeline (Huang et al., 2019) and changes in effective connectivity within the motor network, derived using DCM and parametric empirical bayes (PEB).

The two analyses are:

  1. Correlation analysis between E-field magnitude - medians and max values - (or the current density?) in the motor cortex (M1) and Thalamus (Th) with self- / between-connectivities (M1 and Th only?) as derived from the DCM. e.g. Indahlastari et al. (2021). At the moment I am correlating e-field measures only with DCM measures derived from the contrast pre vs post Day-1 anodal only. However, I should also correlate those e-field measures with DCM measures derived from the contrast pre vs post Day-1 sham. I expect to find correlations between e-field measures and DCM measures for the anodal condition but not for sham.
  2. Pattern-recognition analysis using support vector machine (SVM) learning algorithm on MRI-derived tDCS current models to provide classification of tDCS treatment response (as reflected by increased M1-TH or TH-M1 connectivity or whatever other measure we decide). e.g. Albizu et al. (2020). The question here is: can we classify people who had an increase in thalamo-cortical connectivity using features from the MRI-current models?

The two analyses require similar preprocessing steps. Here's the list of the steps I've done and the respective scripts.

WP2A: I start from a dataset containing 22 folders (one per participant), each containing a T1 and a T2 scan (except for subject 16 who has only a T1).

  1. Renaming of anatomical scans: this renames the anatomical scans of each participant (i.e. sub-01_T1.nii etc).
  2. ROAST simulations: this script runs the ROAST simulations. In brief, ROAST outputs the following scans for each subject, while also using SPM routines for tissue segmentation: Voltage ("subjName_simulationTag_v.nii", unit in mV), E-field ("subjName_simulationTag_e.nii", unit in V/m) and E-field magnitude ("subjName_simulationTag_emag.nii", unit in V/m). The settings I have used for the simulation are: (t1, {'C3',1.0,'Fp2',-1.0},'T2', t2,'electype', 'pad', 'elecsize', [50 50 3], 'capType', '1020').
  3. Post ROAST preprocessing: ROAST outputs are in the ROAST model space. This script moves the results back to the MRI space, coregisters and normalises the electric field maps generated by ROAST. The script also normalise the T1 scan and all the masks.
  4. Ep values extraction from PEB result (Day-1 only): this script, starting from this .mat structure containing 66 PEBs (1 per participant / polarity), extracts the Ep values for each participant. The resulting file contains 66 matrices (participant 1 anodal, cathodal and sham, participant 2 ... 22).
  5. Estimation of posterior probability associated to each PEB extracted above. The script runs bayesian model averages for each PEB using the DCM function spm_dcm_peb_bmc. Results are saved in this .mat structure and used later on in the analyses to exclude connections with a posterior probability lower than 75%.
  6. WP2a e-magnitude measures estimation and correlation analysis. Steps:
    1. Load MNI template and M1/Th ROIs.
    2. Load .mat structure with Ep values and .mat structure with Pp values (Nb. Pp values are not used anymore);
    3. For each subject:
      1. Load normalised scan containing E-field magnitude (wsub-T1_emag.nii), normalised CSF, white and grey matter maps (wc1-2-3sub*.nii).
      2. Save DCM values related to the connections M1-M1, Th-Th, M1->Th and Th-> M1;
      3. Smooth E-field magnitude map using FWHM (4mm kernel);
      4. Mask E-field magnitude map with MNI template to exclude values outside the brain (useless if I then mask with CSF, wm and gm maps or with the M1/Th ROIs);
      5. Mask E-field magnitude map with M1 and Th ROIs and estimate means, medians and max electric-field values within the two ROIs;
      6. Save electric-field magnitude derived measures;
      7. Plot smoothed E-field magnitude map;
      8. Run 16 correlations: 4 DCM measures and 4 E-field measures (medians and max values).
      9. Plot correlations.

Questions:

  1. Electric field magnitudes or current densities?
  2. If so, how to deal with probabilistic masks?
  3. Should I threshold WM masks and apply binary erosion to remove the overlap between WM and GM?
  4. How to deal with Ep values which corresponding Pp is lower than our threshold (75%?)
  5. Should I mask out CSF tissue? Should I use a binary map containing only WM and GM?
  6. Hypotheses? Ideas?

Plots: Sticky note mind map - Sticky note mind map

References:

  1. Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. Journal of Neural Engineering, 16(5), 056006. https://doi.org/10.1088/1741-2552/ab208d
  2. Indahlastari, A., Albizu, A., Kraft, J. N., O’Shea, A., Nissim, N. R., Dunn, A. L., Carballo, D., Gordon, M. P., Taank, S., Kahn, A. T., Hernandez, C., Zucker, W. M., & Woods, A. J. (2021). Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults. Brain Stimulation, 14(5), 1205–1215. https://doi.org/10.1016/j.brs.2021.08.003
  3. Albizu, A., Fang, R., Indahlastari, A., O’Shea, A., Stolte, S. E., See, K. B., Boutzoukas, E. M., Kraft, J. N., Nissim, N. R., & Woods, A. J. (2020). Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimulation, 13(6), 1753–1764. https://doi.org/10.1016/j.brs.2020.10.001
Owner
Davide Aloi
Doctoral Researcher at the University of Birmingham, UK. Centre for Human Brain Health. Investigating Disorders of Consciousness with fMRI and tDCS.
Davide Aloi
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023