Implementation of PersonaGPT Dialog Model

Overview

PersonaGPT

An open-domain conversational agent with many personalities

PersonaGPT is an open-domain conversational agent cpable of decoding personalized and controlled responses based on user input. It is built on the pretrained DialoGPT-medium model, following the GPT-2 architecture. PersonaGPT is fine-tuned on the Persona-Chat dataset, with added special tokens to better distinguish between conversational history and personality traits for dyadic conversations. Furthermore, some active learning was used to train the model to do controlled decoding based on certain "action codes" (e.g., talk about work, ask about music interests).


Personalized Dialog Generation

Also called persona modeling, personalized dialog generation takes as input a set of personality facts and dialog history to generate responses that are (ideally) sensible and diverse, yet consistent with past responses and the given persona profile.

Example

Persona Facts
1 i am 64 years old but feel quite young.
2 i try to eat healthy but limit mcdonalds to once a week.
3 i regret working as a doctor for the last 20 years.
4 my secret hobby is making self-help youtube videos.
5 i've been to spain many times and wish i could go again.
Role Response
Human yo whats good fam?
Bot hello, how are you doing?
Human not bad what you doing today?
Bot eating a lot healthier now that i'm in my 60s
Human i'm more of a fast food guy
Bot me too but i'm very healthy so i try to avoid it
Human what do you do for fun?
Bot i make videos for fun and eat very healthy
Human nice what kind of videos?
Bot i love making videos about self help stuff
Human i think i need some help
Bot what kind of help would you like to get
Human i'm 21 and feel lost in life
Bot i can relate, i'm only 65

Controlled Response Generation

Another feature of PersonaGPT is generating responses that directs conversations toward certain topics of interests. The following is a self-play episode between 2 PersonaGPT agents, one interviews the other.

Bot 2's Persona Facts
1 i am a quiet engineer.
2 i'm single and am looking for love.
3 sadly, i don't have any relatable hobbies.
4 luckily, however, i am tall and athletic.
5 on friday nights, i watch re-runs of the simpsons alone.
Role Action Response
Bot 1 talk about movies hello do you like movies?
Bot 2 - i love the simpsons. how about you?
Bot 1 talk about music i like the walking dead. do you play an instrument?
Bot 2 - yes i play the violin.
Bot 1 ask about marital status are you married or single?
Bot 2 - i am single but i am looking for love.
Bot 1 talk about work my job is working in a factory. what's your occupation?
Bot 2 - engineer. i'm very quiet so no one hears me.
Bot 1 talk about hobbies do you have any hobbies?
Bot 2 - i watch reruns of the simpsons.
Bot 1 ask about favorite food what's your favorite food?
Bot 2 - i love pizza. how about yourself?
Bot 1 ask about pets i also love pizza. do you like animals?
Bot 2 - i have two dogs. what is your occupation?
Bot 1 talk about work i'm a factory worker. what's your dream job?
Bot 2 - i'd love to be a writer one day.

Interactive Environment

To interact with PersonaGPT, run interact.py --mode 0 to manually enter responses and see how the bot responds. You will first be prompted to enter a set of persona facts for your partner and then engage in a short conversation.

Use -turns or --num_turns to adjust the length of conversation (default = 8). To adjust the decoding parameters of PersonaGPT, use --help to bring up available settings to tune. For example, --top_k (default = 10) controls the number of candidate tokens at each decoding step, and --top_p controls the nucleus sampling. See how to generate text from Huggingface for nuances of the GPT decoding process.

To engage in controlled response generation, run interact.py --mode 1. At each turn, you will be prompted to select from a set of topics from which to steer the conversation toward. The output response by PersonaGPT may not always steer the conversation to the topic of interest, depending on the dialog history up to the current turn.


Training

Below are instructions to reconstruct the PersonaGPT from "scratch" (i.e., from pretrained DialoGPT or GPT-2, either of which are feasible as starting pre-trained models).

Requirements:

  • Python 3.6+
  • Pytorch (GPU preferred)
  • transformers
  • dotenv
  • tqdm
  • (optional) apex for fp16 training It is highly recommended that the pytorch and transformers packages are installed under a virtual environment.

After cloning this repository, follow the directions below to set up the training environment.

Instructions:

  1. Go to the .env file and set the save_path to your desired local repository to store model, scheduler and optimizer checkpoints. Point data_path to the ~/data folder of the cloned repository. The .env file also contains the hyperparameter configurations:
epochs = 3
learn_rate = 5e-5
gradient_accumulation_steps = 64
batch_size = 1
weight_decay = 0.0
logging_steps = 10
save_steps = 250

Replace epochs, batch_size, gradient_accumulation_steps and learn_rate with the desired hyperparameters of choice. Please use batch_size = 1 and change gradient accumulation steps to adjust the training batch size. This current repo version does not support parallel batching at the moment (TODO).

  1. Run preprocess_dataset.py to preprocess ~/data/train_both_original_no_cands.txt and ~/data/valid_both_original_no_cands.txt. The original .txt files are obtained from the ConvAI2 Challenge, which may no longer be available since the ConvAI3 challenge has taken place. The ConvAI2 challenge data uses the Persona-Chat dataset which is what is provided under the ~/data folder.

  2. Run train.py to train the PersonaGPT model. Results (e.g., pretrain_loss, persona_loss, ctrl_loss) will be saved under [save_path]/samples/. Model checkpoints are saved under [save_path]/checkpoint/model.

Currently there are 2 training loops, pretrain() and train_loop(). pretrain() first trains model on the Persona-Chat dataset and saves the performance under pretrain_stats. train_loop() then fine-tunes the model on active learning data, which examples of using action codes (e.g., "talk about hobbies", "ask about pets") to do controlled response generation. The pretrained model can be used as as stand-alone dialog model for personalized dialog generation without fine-tuning on the actively learned actions.

  • pretrain_loss: tracks the training loss on Persona-Chat dataset during pretrain().
  • persona_loss: tracks the training loss on Persona-Chat during train_loop().
  • ctrl_loss: tracks the training loss on actively learned action codes during train_loop().

Active Learning

Currently, there are 11 possible turn-level goals that can be used for controlled response generation.

Turn-level Goals
1. ask about family. 4. talk about traveling. 7. talk about music.
2. ask about pets. 5. ask about age and gender. 8. talk about food.
3. talk about work. 6. talk about hobbies. 9. talk about movies.
10. talk about politics. 11. ask about marital status. -

These turn-level goals are handcrafted based on the personachat dataset to cover most of the conversational directions at the turn-level.

To actively learn new turn-level goals, use the convogym repo.


Evaluation

After training, an evaluation loop will run and print out a set of scores saved under eval_stats. Below is a comparison of PersonaGPT vs. other baselines on the Persona-Chat dataset using automatic evaluation metrics. Your results should look something like:

Model Perplexity F1 Score
Seq2seq Baseline [3] 29.8 16.2
Wolf et al. [5] 16.3 19.5
GPT-2 baseline 99.5 5.8
DialoGPT baseline 56.6 12.6
DialoGPT finetuned 11.4 22.7
PersonaGPT 10.2 43.4

Cite Us

Our full paper is now up on arXiv.

@misc{tang2021persona,
      title={Persona Authentication through Generative Dialogue}, 
      author={Fengyi Tang and Lifan Zeng and Fei Wang and Jiayu Zhou},
      year={2021},
      eprint={2110.12949},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

References

  1. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019): 9.

  2. Zhang, Yizhe, et al. "Dialogpt: Large-scale generative pre-training for conversational response generation." arXiv preprint arXiv:1911.00536 (2019).

  3. Zhang, Saizheng, et al. "Personalizing dialogue agents: I have a dog, do you have pets too?." arXiv preprint arXiv:1801.07243 (2018).

  4. Dinan et al., "The Second Conversational Intelligence Challenge (ConvAI2)." arXiv preprint arXiv:1902.00098 (2019).

  5. Thomas Wolf et al. "Transfertransfo: A transfer learning approach for neural network based conversational agents." arXiv preprint328arXiv:1901.08149, 2019

Owner
ILLIDAN Lab
Intelligent Data Analytics Lab @ MSU : Creating Large-Scale Machine Learning Algorithms for Big Data Analytics
ILLIDAN Lab
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021