Autonomous Perception: 3D Object Detection with Complex-YOLO

Overview

Autonomous Perception: 3D Object Detection with Complex-YOLO

Gif of 50 frames of darknet

LiDAR object detection with Complex-YOLO takes four steps:

  1. Computing LiDAR point-clouds from range images.
  2. Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library (PCL).
  3. Using both Complex-YOLO Darknet and Resnet to predict 3D dectections on transformed LiDAR images.
  4. Evaluating the detections based Precision and Recall.

Complex-Yolo Pipeline

Complex-Yolo is both highly accurate and highly performant in production:

Complex-Yolo Performance

Computing LiDAR Point-Clouds from Waymo Range Images

Waymo uses multiple sensors including LiDAR, cameras, radar for autonomous perception. Even microphones are used to help detect ambulance and police sirens.

Visualizing LiDAR Range and Intensity Channels

LiDAR visualization 1

Roof-mounted "Top" LiDAR rotates 360 degrees with a vertical field of vision or ~20 degrees (-17.6 degrees to +2.4 degrees) with a 75m limit in the dataset.

LiDAR data is stored as a range image in the Waymo Open Dataset. Using OpenCV and NumPy, we filtered the "range" and "intensity" channels from the image, and converted the float data to 8-bit unsigned integers. Below is a visualization of two video frames, where the top half is the range channel, and the bottom half is the intensity for each visualization:

LiDAR visualization 2

Visualizing th LiDAR Point-cloud

There are 64 LEDs in Waymo's top LiDAR sensor. Limitations of 360 LiDAR include the space between beams (aka resolution) widening with distance from the origin. Also the car chasis will create blind spots, creating the need for Perimeter LiDAR sensors to be inlcuded on the sides of the vehicles.

We leveraged the Open3D library to make a 3D interactive visualization of the LiDAR point-cloud. Commonly visible features are windshields, tires, and mirros within 40m. Beyond 40m, cars are like slightly rounded rectangles where you might be able to make ou the windshield. Further away vehicles and extremely close vehicles typically have lower resolution, as well as vehicles obstructing the detection of other vehicles.

10 Vehicles Showing Different Types of LiDAR Interaction:

  1. Truck with trailer - most of truck is high resolution visible, but part of the trailer is in the 360 LiDAR's blind-spot.
  2. Car partial in blind spot, back-half isn't picked up well. This car blocks the larges area behind it from being detected by the LiDAR.
  3. Car shape is higly visible, where you can even see the side-mirrors and the LiDAR passing through the windshield.
  4. Car driving in other lane. You can see the resolution of the car being lower because the further away the 64 LEDs project the lasers, the futher apart the points of the cloud will be. It is also obstructed from some lasers by Car 2.
  5. This parked is unobstructed, but far enough away where it's difficult to make our the mirrors or the tires.
  6. Comparing this car to Car 3, you can see where most of the definition is either there or slightly worse, because it is further way.
  7. Car 7 is both far away and obstructed, so you can barely tell it's a car. It's basically a box with probably a windshield.
  8. Car 8 is similar to Car 6 on the right side, but obstructed by Car 6 on the left side.
  9. Car 9 is at the limit of the LiDAR's dataset's perception. It's hard to tell it's a car.
  10. Car 10 is at the limit of the LiDAR's perception, and is also obstructed by car 8.

Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library

Convert sensor coordinates to Bird's-Eye View map coordinates

The birds-eye view (BEV) of a LiDAR point-cloud is based on the transformation of the x and y coordinates of the points.

BEV map properties:

  • Height:

    H_{i,j} = max(P_{i,j} \cdot [0,0,1]T)

  • Intensity:

    I_{i,j} = max(I(P_{i,j}))

  • Density:

    D_{i,j} = min(1.0,\ \frac{log(N+1)}{64})

P_{i,j} is the set of points that falls into each cell, with i,j as the respective cell coordinates. N_{i,j} refers to the number of points in a cell.

Compute intensity layer of the BEV map

We created a BEV map of the "intensity" channel from the point-cloud data. We identified the top-most (max height) point with the same (x,y)-coordinates from the point-cloud, and assign the intensity value to the corresponding BEV map point. The data was normalized and outliers were removed until the features of interest were clearly visible.

Compute height layer of the BEV map

This is a visualization of the "height" channel BEV map. We sorted and pruned point-cloud data, normalizing the height in each BEV map pixel by the difference between max. and min.

Model-based Object Detection in BEV Image

We used YOLO3 and Resnet deep-learning models to doe 3D Object Detection. Complex-YOLO: Real-time 3D Object Detection on Point Clouds and Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds.

Extract 3D bounding boxes from model response

The models take a three-channel BEV map as an input, and predict the class about coordinates of objects (vehicles). We then transformed these BEV coordinates back to the vehicle coordinate-space to draw the bounding boxes in both images.

Transforming back to vehicle space

Below is a gif the of detections in action: Results from 50 frames of resnet detection

Performance Evaluation for Object Detection

Compute intersection-over-union between labels and detections

Based on the labels within the Waymo Open Dataset, your task is to compute the geometrical overlap between the bounding boxes of labels and detected objects and determine the percentage of this overlap in relation to the area of the bounding boxes. A default method in the literature to arrive at this value is called intersection over union, which is what you will need to implement in this task.

After detections are made, we need a set of metrics to measure our progress. Common classification metrics for object detection include:

TP, FN, FP

  • TP: True Positive - Predicts vehicle or other object is there correctly
  • TN: True Negative - Correctly predicts vehicle or object is not present
  • FP: False Positive - Dectects object class incorrectly
  • FN: False Negative - Didn't detect object class when there should be a dectection

One popular method of making these determinations is measuring the geometric overlap of bounding boxes vs the total area two predicted bounding boxes take up in an image, or th Intersecion over Union (IoU).

IoU formula

IoU for Complex-Yolo

Classification Metrics Based on Precision and Recall

After all the LiDAR and Camera data has been transformed, and the detections have been predicted, we calculate the following metrics for the bounding box predictions:

Formulas

  • Precision:

    \frac{TP}{TP + FP}

  • Recall:

    \frac{TP}{TP + FN}

  • Accuracy:

    \frac{TP + TN}{TP + TN + FP + FN}

  • Mean Average Precision:

    \frac{1}{n} \sum_{Recall_{i}}Precision(Recall_{i})

Precision and Recall Results Visualizations

Results from 50 frames: Results from 50 frames

Precision: .954 Recall: .921

Complex Yolo Paper

Owner
Thomas Dunlap
Machine Learning Engineer and Data Scientist with a focus on deep learning, computer vision, and robotics.
Thomas Dunlap
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Pascal Vizeli 2 Dec 09, 2022