Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Related tags

Deep LearningMetrics
Overview

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories.

Build Status

Metrics provides implementations of various supervised machine learning evaluation metrics in the following languages:

  • Python easy_install ml_metrics
  • R install.packages("Metrics") from the R prompt
  • Haskell cabal install Metrics
  • MATLAB / Octave (clone the repo & run setup from the MATLAB command line)

For more detailed installation instructions, see the README for each implementation.

EVALUATION METRICS

Evaluation Metric Python R Haskell MATLAB / Octave
Absolute Error (AE)
Average Precision at K (APK, [email protected])
Area Under the ROC (AUC)
Classification Error (CE)
F1 Score (F1)
Gini
Levenshtein
Log Loss (LL)
Mean Log Loss (LogLoss)
Mean Absolute Error (MAE)
Mean Average Precision at K (MAPK, [email protected])
Mean Quadratic Weighted Kappa
Mean Squared Error (MSE)
Mean Squared Log Error (MSLE)
Normalized Gini
Quadratic Weighted Kappa
Relative Absolute Error (RAE)
Root Mean Squared Error (RMSE)
Relative Squared Error (RSE)
Root Relative Squared Error (RRSE)
Root Mean Squared Log Error (RMSLE)
Squared Error (SE)
Squared Log Error (SLE)

TO IMPLEMENT

  • F1 score
  • Multiclass log loss
  • Lift
  • Average Precision for binary classification
  • precision / recall break-even point
  • cross-entropy
  • True Pos / False Pos / True Neg / False Neg rates
  • precision / recall / sensitivity / specificity
  • mutual information

HIGHER LEVEL TRANSFORMATIONS TO HANDLE

  • GroupBy / Reduce
  • Weight individual samples or groups

PROPERTIES METRICS CAN HAVE

(Nonexhaustive and to be added in the future)

  • Min or Max (optimize through minimization or maximization)
  • Binary Classification
    • Scores predicted class labels
    • Scores predicted ranking (most likely to least likely for being in one class)
    • Scores predicted probabilities
  • Multiclass Classification
    • Scores predicted class labels
    • Scores predicted probabilities
  • Regression
  • Discrete Rater Comparison (confusion matrix)
Owner
Ben Hamner
Co-founder and CTO of Kaggle
Ben Hamner
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023