Rendering color and depth images for ShapeNet models.

Overview

Color & Depth Renderer for ShapeNet


This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically based rendering (PBR) is featured based on blender2.79.


Outputs

  1. Color image (20 views)

color_1.png color_2.PNG

  1. Depth image (20 views)

depth_1.png depth_2.PNG

  1. Point cloud and normals (Back-projected from color & depth images)

point_cloud_1.png point_cloud_2.png

  1. Watertight meshes (fused from depth maps)

mesh_1.png mesh_2.png


Install

  1. We recommend to install this repository with conda.
    conda env create -f environment.yml
    conda activate renderer
    
  2. Install Pyfusion by
    cd ./external/pyfusion
    mkdir build
    cd ./build
    cmake ..
    make
    
    Afterwards, compile the Cython code in ./external/pyfusion by
    cd ./external/pyfusion
    python setup.py build_ext --inplace
    
  3. Download & Extract blender2.79b, and specify the path of your blender executable file at ./setting.py by
    g_blender_excutable_path = '../../blender-2.79b-linux-glibc219-x86_64/blender'
    

Usage

  1. Normalize ShapeNet models to a unit cube by

    python normalize_shape.py
    

    The ShapeNetCore.v2 dataset is put in ./datasets/ShapeNetCore.v2. Here we only present some samples in this repository.

  2. Generate multiple camera viewpoints for rendering by

    python create_viewpoints.py
    

    The camera extrinsic parameters will be saved at ./view_points.txt, or you can customize it in this script.

  3. Run renderer to render color and depth images by

    python run_render.py
    

    The rendered images are saved in ./datasets/ShapeNetRenderings. The camera intrinsic and extrinsic parameters are saved in ./datasets/camera_settings. You can change the rendering configurations at ./settings.py, e.g. image sizes and resolution.

  4. The back-projected point cloud and corresponding normals can be visualized by

    python visualization/draw_pc_from_depth.py
    
  5. Watertight meshes can be obtained by

    python depth_fusion.py
    

    The reconstructed meshes are saved in ./datasets/ShapeNetCore.v2_watertight


Citation

This library is used for data preprocessing in our work SK-PCN. If you find it helpful, please consider citing

@inproceedings{NEURIPS2020_ba036d22,
 author = {Nie, Yinyu and Lin, Yiqun and Han, Xiaoguang and Guo, Shihui and Chang, Jian and Cui, Shuguang and Zhang, Jian.J},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {16119--16130},
 publisher = {Curran Associates, Inc.},
 title = {Skeleton-bridged Point Completion: From Global Inference to Local Adjustment},
 url = {https://proceedings.neurips.cc/paper/2020/file/ba036d228858d76fb89189853a5503bd-Paper.pdf},
 volume = {33},
 year = {2020}
}


License

This repository is relased under the MIT License.

Owner
Yinyu Nie
Currently a Post-doc researcher in the Visual Computing Group, Technical University of Munich.
Yinyu Nie
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022