Automatic voice-synthetised summaries of latest research papers on arXiv

Overview

PaperWhisperer

PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv on a topic, by performing a keyword-based search. Then, it creates vocal summaries of the articles using Text-To-Speech and stores them to disk.

Installation

To install the package, move to the root of the repo and type in the console:

$ pip install .

If you plan to develop the package further, install the package in editable mode also installing the packages necessary to run unittests:

$ pip install -e .[test]

Testing

To run unittests, issue the following command from the root of the repo:

$ pytest

Package structure

The package is divided into 2 sub-packages:

  • retrieval
  • tts

retrieval contains data structures and facilities necessary to retrieve articles from arXiv. Under the hood, the app uses arxiv, a Python package that is a wrapper around the arXiv free API.

tts has facilities to generate speech renditions of text-based article summaries. The summary of an article consists of its title, authors, and abstract. Speech synthesis is performed using Google Cloud Text-To-Speech.

Setting up Google Cloud Text-To-Speech

PaperWhisperer uses Google Cloud Text-To-Speech to synthesise speech.

In order to be able to use this service, you should:

  1. create an account on Google Cloud,
  2. create a Cloud Platform project,
  3. enable the Text-To-Speech API in the project
  4. setup authentication
  5. download a Json private key

More info on how to set up Google Cloud Text-To-Speech

Environment variables

The app uses an environment variable called GOOGLE_APPLICATION_CREDENTIALS to connect to Google Cloud Text-To-Speech safely.

In config.yml, set GOOGLE_APPLICATION_CREDENTIALS to the path of the Json private key you previously downloaded while setting up the Google service.

Without this step, you won't be able to connect to Google Cloud Text-To-Speech, and the app will throw an error.

How to create summaries

To create summaries for a keyword search, use the create_summaries entry point. This is the only console script of the package and the main entry point of the application.

Below is an example of how you can run the script:

$ create_summaries "generate chord progressions" 100 /save/dir 40

The script takes 4 positional arguments:

  • keywords used for searching articles (more than one keyword is possible)
  • maximum number of articles to retrieve
  • directory where to store vocal summaries
  • retrieve articles no older than this integer value in days

Dependencies

PaperWhisperer depends on the following packages:

  • arxiv==1.2.0
  • google-cloud-texttospeech
  • python-dotenv

YouTube video

Learn more about PaperWhisperer in this project presentation video on The Sound of AI YouTube channel.

Owner
Valerio Velardo
AI audio/music researcher. Love Python.
Valerio Velardo
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022