Multi-Modal Machine Learning toolkit based on PaddlePaddle.

Related tags

Deep LearningPaddleMM
Overview

简体中文 | English

PaddleMM

简介

飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。

近期更新

  • 2022.1.5 发布 PaddleMM 初始版本 v1.0

特性

  • 丰富的任务场景:工具包提供多模态融合、跨模态检索、图文生成等多种多模态学习任务算法模型库,支持用户自定义数据和训练。
  • 成功的落地应用:基于工具包算法已有相关落地应用,如球鞋真伪鉴定、球鞋风格迁移、家具图片自动描述、舆情监控等。

应用展示

  • 球鞋真伪鉴定 (更多信息欢迎访问我们的网站 Ysneaker !)
  • 更多应用

落地实践

  • 与百度人才智库(TIC)合作 智能招聘 简历分析,基于多模态融合算法并成功落地。

框架

PaddleMM 包括以下模块:

  • 数据处理:提供统一的数据接口和多种数据处理格式
  • 模型库:包括多模态融合、跨模态检索、图文生成、多任务算法
  • 训练器:对每种任务设置统一的训练流程和相关指标计算

使用

下载工具包

git clone https://github.com/njustkmg/PaddleMM.git

使用示例:

from paddlemm import PaddleMM

# config: Model running parameters, see configs/
# data_root: Path to dataset
# image_root: Path to images
# gpu: Which gpu to use

runner = PaddleMM(config='configs/cmml.yml',
                  data_root='data/COCO', 
                  image_root='data/COCO/images', 
                  gpu=0)

runner.train()
runner.test()

或者

python run.py --config configs/cmml.yml --data_root data/COCO --image_root data/COCO/images --gpu 0

模型库 (更新中)

[1] Comprehensive Semi-Supervised Multi-Modal Learning

[2] Stacked Cross Attention for Image-Text Matching

[3] Similarity Reasoning and Filtration for Image-Text Matching

[4] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

[5] Attention on Attention for Image Captioning

[6] VQA: Visual Question Answering

[7] ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

实验结果 (COCO) (更新中)

  • Multimodal fusion
Average_Precision Coverage Example_AUC Macro_AUC Micro_AUC Ranking_Loss
CMML 0.682 18.827 0.948 0.927 0.950 0.052 semi-supervised
Early(add) 0.974 16.681 0.969 0.952 0.968 0.031 VGG+LSTM
Early(add) 0.974 16.532 0.971 0.958 0.972 0.029 ResNet+GRU
Early(concat) 0.797 16.366 0.972 0.959 0.973 0.028 ResNet+LSTM
Early(concat) 0.798 16.541 0.971 0.959 0.972 0.029 ResNet+GRU
Early(concat) 0.795 16.704 0.969 0.952 0.968 0.031 VGG+LSTM
Late(mean) 0.733 17.849 0.959 0.947 0.963 0.041 ResNet+LSTM
Late(mean) 0.734 17.838 0.959 0.945 0.962 0.041 ResNet+GRU
Late(mean) 0.738 17.818 0.960 0.943 0.962 0.040 VGG+LSTM
Late(mean) 0.735 17.938 0.959 0.941 0.959 0.041 VGG+GRU
Late(max) 0.742 17.953 0.959 0.944 0.961 0.041 ResNet+LSTM
Late(max) 0.736 17.955 0.959 0.941 0.961 0.041 ResNet+GRU
Late(max) 0.727 17.949 0.958 0.940 0.959 0.042 VGG+LSTM
Late(max) 0.737 17.983 0.959 0.942 0.959 0.041 VGG+GRU
  • Image caption
Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider
NIC(paper) 71.8 50.3 35.7 25.0 23.0 - -
NIC-VGG(ours) 69.9 52.4 37.9 27.1 23.4 51.4 84.5
NIC-ResNet(ours) 72.8 56.0 41.4 30.1 25.2 53.7 95.9
AoANet-CE(paper) 78.7 - - 38.1 28.4 57.5 119.8
AoANet-CE(ours) 75.1 58.7 44.4 33.2 27.2 55.8 109.3

成果

多模态论文

  • Yang Yang, Chubing Zhang, Yi-Chu Xu, Dianhai Yu, De-Chuan Zhan, Jian Yang. Rethinking Label-Wise Cross-Modal Retrieval from A Semantic Sharing Perspective. Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-2021), Montreal, Canada, 2021. (CCF-A).
  • Yang Yang, Ke-Tao Wang, De-Chuan Zhan, Hui Xiong, Yuan Jiang. Comprehensive Semi-Supervised Multi-Modal Learning. Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019) , Macao, China, 2019. [Pytorch Code] [Paddle Code]
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Deep Robust Unsupervised Multi-Modal Network. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019) , Honolulu, Hawaii, 2019.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Yuan Jiang. Deep Multi-modal Learning with Cascade Consensus. Proceedings of the Pacific Rim International Conference on Artificial Intelligence (PRICAI-2018) , Nanjing, China, 2018.
  • Yang Yang, Yi-Feng Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Complex Object Classification: A Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. Proceedings of the Annual Conference on ACM SIGKDD (KDD-2018) , London, UK, 2018. [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, Yuan Jiang. Semi-Supervised Multi-Modal Learning with Incomplete Modalities. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-2018) , Stockholm, Sweden, 2018.
  • Yang Yang, De-Chuan Zhan, Ying Fan, and Yuan Jiang. Instance Specific Discriminative Modal Pursuit: A Serialized Approach. Proceedings of the 9th Asian Conference on Machine Learning (ACML-2017) , Seoul, Korea, 2017. [Best Paper] [Code]
  • Yang Yang, De-Chuan Zhan, Xiang-Yu Guo, and Yuan Jiang. Modal Consistency based Pre-trained Multi-Model Reuse. Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-2017) , Melbourne, Australia, 2017.
  • Yang Yang, De-Chuan Zhan, Yin Fan, Yuan Jiang, and Zhi-Hua Zhou. Deep Learning for Fixed Model Reuse. Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-2017), San Francisco, CA. 2017.
  • Yang Yang, De-Chuan Zhan and Yuan Jiang. Learning by Actively Querying Strong Modal Features. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-2016), New York, NY. 2016, Page: 1033-1039.
  • Yang Yang, Han-Jia Ye, De-Chuan Zhan and Yuan Jiang. Auxiliary Information Regularized Machine for Multiple Modality Feature Learning. Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015), Buenos Aires, Argentina, 2015, Page: 1033-1039.
  • Yang Yang, De-Chuan Zhan, Yi-Feng Wu, Zhi-Bin Liu, Hui Xiong, and Yuan Jiang. Semi-Supervised Multi-Modal Clustering and Classification with Incomplete Modalities. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)
  • Yang Yang, Zhao-Yang Fu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 2020. (CCF-A)

更多论文欢迎访问我们的网站 njustlkmg

飞桨论文复现挑战赛

  • 飞桨论文复现挑战赛 (第四期):《Comprehensive Semi-Supervised Multi-Modal Learning》赛题冠军
  • 飞桨论文复现挑战赛 (第五期):《From Recognition to Cognition: Visual Commonsense Reasoning》赛题冠军

贡献

  • 非常感谢百度人才智库(TIC)提供的技术和应用落地支持。
  • 我们非常欢迎您为 PaddleMM 贡献代码,也十分感谢你的反馈。

许可证书

本项目的发布受 Apache 2.0 license 许可认证。

Owner
njustkmg
njustkmg
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022