Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

Related tags

Deep Learning2dtan
Overview

2D-TAN (Optimized)

Introduction

This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for Moment Localization with Natural Language.

We show advantages in speed and performance compared with the official implementation (https://github.com/microsoft/2D-TAN).

Comparison

Performance: Better Results

1. TACoS Dataset

Repo [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Official 47.59 37.29 25.32 70.31 57.81 45.04
Ours 57.54 45.36 31.87 77.88 65.83 54.29

2. ActivityNet Dataset

Repo [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Official 59.45 44.51 26.54 85.53 77.13 61.96
Ours 60.00 45.25 28.62 85.80 77.25 62.11

Speed and Cost: Faster Training/Inference, Less Memory Cost

1. Speed (ActivityNet Dataset)

Repo Training Inferece Required Training Epoches
Official 1.98 s/batch 0.81 s/batch 100
Ours 1.50 s/batch 0.61 s/batch 5

2. Memory Cost (ActivityNet Dataset)

Repo Training Inferece
Official 4*10145 MB/batch 4*3065 MB/batch
Ours 4*5345 MB/batch 4*2121 MB/batch

Note: These results are measured on 4 NVIDIA Tesla V100 GPUs, with batch size 32.

Installation

The installation for this repository is easy. Please refer to INSTALL.md.

Dataset

Please refer to DATASET.md to prepare datasets.

Quick Start

We provide scripts for simplifying training and inference. Please refer to scripts/train.sh, scripts/eval.sh.

For example, if you want to train TACoS dataset, just modifying scripts/train.sh as follows:

# find all configs in configs/
model=2dtan_128x128_pool_k5l8_tacos
# set your gpu id
gpus=0,1,2,3
# number of gpus
gpun=4
# please modify it with different value (e.g., 127.0.0.2, 29502) when you run multi 2dtan task on the same machine
master_addr=127.0.0.1
master_port=29501
...

Another example, if you want to evaluate on ActivityNet dataset, just modifying scripts/eval.sh as follows:

# find all configs in configs/
config_file=configs/2dtan_64x64_pool_k9l4_activitynet.yaml
# the dir of the saved weight
weight_dir=outputs/2dtan_64x64_pool_k9l4_activitynet
# select weight to evaluate
weight_file=model_1e.pth
# test batch size
batch_size=32
# set your gpu id
gpus=0,1,2,3
# number of gpus
gpun=4
# please modify it with different value (e.g., 127.0.0.2, 29502) when you run multi 2dtan task on the same machine
master_addr=127.0.0.2
master_port=29502
...

Support

Please open a new issue. We would like to answer it. Please feel free to contact me: [email protected] if you need my help.

Acknowledgements

We greatly appreciate the official 2D-Tan repository https://github.com/microsoft/2D-TAN and maskrcnn-benchmark https://github.com/facebookresearch/maskrcnn-benchmark. We learned a lot from them. Moreover, please remember to cite the paper:

@InProceedings{2DTAN_2020_AAAI,
author = {Zhang, Songyang and Peng, Houwen and Fu, Jianlong and Luo, Jiebo},
title = {Learning 2D Temporal Adjacent Networks forMoment Localization with Natural Language},
booktitle = {AAAI},
year = {2020}
} 
Owner
Joya Chen
Hopes never die
Joya Chen
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022