Official PyTorch implementation of RIO

Overview

NVIDIA Source Code License Python 3.6

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection

Figure 1: Our proposed Resampling at image-level and obect-level (RIO).

Project page | Paper

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection.
Nadine Chang, Zhiding Yu, Yu-Xiong Wang, Anima Anandkumar, Sanja Fidler, Jose M. Alvarez.
ICML 2021.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for RIO.

Abstract

Training on datasets with long-tailed distributions has been challenging for major recognition tasks such as classification and detection. To deal with this challenge, image resampling is typically introduced as a simple but effective approach. However, we observe that long-tailed detection differs from classification since multiple classes may be present in one image. As a result, image resampling alone is not enough to yield a sufficiently balanced distribution at the object level. We address object-level resampling by introducing an object-centric memory replay strategy based on dynamic, episodic memory banks. Our proposed strategy has two benefits: 1) convenient object-level resampling without significant extra computation, and 2) implicit feature-level augmentation from model updates. We show that image-level and object-level resamplings are both important, and thus unify them with a joint resampling strategy (RIO). Our method outperforms state-of-the-art long-tailed detection and segmentation methods on LVIS v0.5 across various backbones.

Requirements

  • Linux or maxOS with Python >= 3.6
  • PyTorch >= 1.5 and torchvision corresponding to PyTorch installation. Please refer to download guildlines at the PyTorch website
  • Detectron2
  • OpenCV is optional but required for visualizations

Installation

Detectron2

Please refer to the installation instructions in Detectron2.

We use Detectron2 v0.3 as the codebase. Thus, we advise installing Detectron2 from a clone of this repository.

LVIS Dataset

Dataset download is available at the official LVIS website. Please follow Detectron's guildlines on expected LVIS dataset structure.

Our Setup

  • Python 3.6.9
  • PyTorch 1.5.0 with CUDA 10.2
  • Detectron2 built from this repository.

Pretrained Models

Detection and Instance Segmentation on LVIS v0.5

Backbone Method AP.b AP.b.r AP.b.c AP.b.f AP.m AP.m.r AP.m.c AP.m.f download
R50-FPN MaskRCNN-RIO 25.7 17.2 25.1 29.8 26.0 18.9 26.2 28.5 model
R101-FPN MaskRCNN-RIO 27.3 19.1 26.8 31.2 27.7 20.1 28.3 30.0 model
X101-FPN MaskRCNN-RIO 28.6 19.0 28.0 33.0 28.9 19.5 29.7 31.6 model

Training & Evaluation

Our code is located under projects/RIO.

Our training and evaluation follows those of Detectron2's. We've provided config files for both LVISv0.5 and LVISv1.0.

Example: Training LVISv0.5 on Mask-RCNN ResNet-50

# We advise multi-gpu training
cd projects/RIO
python memory_train_net.py \
--num-gpus 4 \
--config-file=configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml 

Example: Evaluating LVISv0.5 on Mask-RCNN ResNet-50

cd projects/RIO
python memory_train_net.py \
--eval-only MODEL.WEIGHTS /path/to/model_checkpoint \
--config-file configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml  

By default, LVIS evaluation follows immediately after training.

Visualization

Detectron2 has built-in visualization tools. Under tools folder, visualize_json_results.py can be used to visualize the json instance detection/segmentation results given by LVISEvaluator.

python visualize_json_results.py --input x.json --output dir/ --dataset lvis

Further information can be found on Detectron2 tools' README.

License

Please check the LICENSE file. RIO may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{chang2021image,
  title={Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection},
  author={Chang, Nadine and Yu, Zhiding and Wang, Yu-Xiong and Anandkumar, Anima and Fidler, Sanja and Alvarez, Jose M},
  journal={arXiv preprint arXiv:2104.05702},
  year={2021}
}
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022