A real world application of a Recurrent Neural Network on a binary classification of time series data

Overview

What is this

This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data cleanup, model creation, fitting, and testing/reporting and was designed and analysed in less than 24 hours.

Challenge and input

Three input files were provided for this challenge:

  • aigua.csv
  • aire.csv
  • amoni.csv (amoni_pred.csv is the same thing with integers rather than booleans)

The objective is to train a Machine Learning classifier that can predict dangerous drift on amoni.

Analysis procedure

Gretl has benn used to analyze the data.

Ideally, fuzzing techniques would be applied that would remove the input noise on amoni from the correlation with aigua.csv and aire.csv. After many hours of analysis I decided that the input files aire.csv and aigua.csv did not provide enough valuable data.

After much analysis of the amoni.csv file, I identified a technique that was able to remove most of the noise.

The technique has been implemented into the run.py file. This file cleanups up the data on amoni_pred.csv. It groups data by time intervals and gets the mean. It removes values that are too small. It clips the domain of the values. It removes noise by selecting the minimum values in a window slice. And (optionally) it corrects the dangerous drift values.

Generating the model

Once the file amoni_pred_base.csv has been created after cleaning up the input, we can move on to generating the model. Models are created and trained by the pred.py file. This file creates a Neural Network architecture with Recurrent Neural Networks (RNN). To be more precise, this NN has been tested with SimpleRNN and Long Short Term Memory (LSTM) layers. LSTM were chosed because they were seen to converge faster and provide better results and flexibility.

The input has been split on train/test sets. In order to test the network on fully unknown intervals, the test window time is non overlapping with the train window.

In order to allow prediction of a value, a window time slice is fed on to the LSTM layers. This window only includes past values and does not provide a lookahead cheat opportunity. The model is trained with checkpoints tracking testing accuracy. Loss and accuracy graphs are automatically generated for the training and testing sets.

Testing the models

After the models have been generated, the file test.py predicts the drift and dangerous values on the input data, It also provides accuracy metrics and saves the resulting file output.csv. This file can then be analysed with Gretl.

Performance

Our models are capable of achieving:

  • ~ 75% Accuracy on dangerous drifts with minimal time delays
  • ~ 80% Accuracy on drifts with minimal time delays

Moreover, with the set of corrections of the dangerous drift input values explained in previous sections, our model can achieve:

  • ~ 87% Accuracy on dangerous drifts with minimal time delays

Future Work / Improvements

Many improvements are possible on this architecture. First of all, fine tuning of the hyper parameters (clean up data set values, NN depth, type of layers, etc) should all be considered. Furthermore, more data should be collected, because the current data set only provides information for ~ 8 drifts. On top of that, more advanced noise analysis techniques should be applied, like fuzzing, exponential smoothing etc.

Other possible techniques

Yes, Isolation Forests are probably a better idea. But LSTM layers are cool :)

Show me some pictures

In blue, expected dangerous drift predictions. In orange the prediction by the presented model.

Screenshot1

Furthermore, with the patched dangerous drift patch:

Screenshot2

Owner
Josep Maria Salvia Hornos
Studying Business Management & Computer Science :D
Josep Maria Salvia Hornos
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022