Reinforcement Learning via Supervised Learning

Related tags

Deep Learningrvs
Overview

CircleCI codecov

Reinforcement Learning via Supervised Learning

Installation

Run

pip install -e .

in an environment with Python >= 3.7.0, <3.9.

The code depends on MuJoCo 2.1.0 (for mujoco-py) and MuJoCo 2.1.1 (for dm-control). Here are instructions for installing MuJoCo 2.1.0 and instructions for installing MuJoCo 2.1.1.

If you use the provided Dockerfile, it will automatically handle the MuJoCo dependencies for you. For example:

docker build -t rvs:latest .
docker run -it --rm -v $(pwd):/rvs rvs:latest bash
cd rvs
pip install -e .

Reproducing Experiments

The experiments directory contains a launch script for each environment suite. For example, to reproduce the RvS-R results in D4RL Gym locomotion, run

bash experiments/launch_gym_rvs_r.sh

Each launch script corresponds to a configuration file in experiments/config which serves as a reference for the hyperparameters associated with each experiment.

Adding New Environments

To run RvS on an environment of your own, you need to create a suitable dataset class. For example, in src/rvs/dataset.py, we have a dataset class for the GCSL environments, a dataset class for RvS-R in D4RL, and a dataset class for RvS-G in D4RL. In particular, the D4RLRvSGDataModule allows for conditioning on arbitrary dimensions of the goal state using the goal_columns attribute; for AntMaze, we set goal_columns to (0, 1) to condition only on the x and y coordinates of the goal state.

Baseline Numbers

We replicated CQL using this codebase, which was recommended to us by the CQL authors. All hyperparameters and logs from our replication runs can be viewed at our CQL-R Weights & Biases project.

We replicated Decision Transformer using our fork of the author's codebase, which we customized to add AntMaze. All hyperparameters and logs from our replication runs can be viewed at our DT Weights & Biases project.

Citing RvS

To cite RvS, you can use the following BibTeX entry:

@misc{emmons2021rvs,
      title={RvS: What is Essential for Offline RL via Supervised Learning?}, 
      author={Scott Emmons and Benjamin Eysenbach and Ilya Kostrikov and Sergey Levine},
      year={2021},
      eprint={2112.10751},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Scott Emmons
PhD student at UC Berkeley's Center for Human-Compatible Artificial Intelligence
Scott Emmons
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023