Camera-caps - Examine the camera capabilities for V4l2 cameras

Overview

camera-caps

This is a graphical user interface over the v4l2-ctl command line tool. This program supports an upcoming JetsonHacks article and video.

Intended Spirit

This app is a simple software sketch built to support a demonstration. It is not fully featured, and certainly not production quality code, but you may find it useful for your own study and experimentation.

On the NVIDIA Jetson family of products, connected cameras generally stream through the V4L2 module. USB cameras go through the uvcvideo module which interfaces with the v4l2 module. Cameras connected through the CSI/MIPI ports (Raspberry Pi camera, GMSL cameras for example) interface with the tegra-video module, which in turn interfaces with the v4l2 module.

Connected cameras show up as /dev/videoX (where X is the ID number) when connected with the proper drivers installed. Properly connected and registered, you can use the v4l2-ctl utility to examine the properties of the cameras. This includes the available pixel formats, frame sizes, frame rates, and properties. There are controls to adjust the properties of the camera. The GUI provides a consolidated view:

Screenshot

Note

Not all cameras provide a V4L2 interface. Some cameras have proprietary interfaces that are not exposed through V4L2.

Installation

$ sudo apt update
$ sudo apt install python3-pip
$ pip3 install dataclasses
# Install v4l2-ctl
$ sudo apt install v4l-utils

Running the Program

Before running the program, first make sure that the cameras you want to examine are attached. The program does not detect dynamic attachment. If you plug/unplug a camera, restart the program. Also note that USB cameras do not have a guaranteed address in their /dev/videoX designation. In other words, the address may change when the machine reboots or other cameras are added. To run:

$ python3 camera_caps.py

The preview button attempts to build a GStreamer pipeline and run it in a preview window. The preview window is not the full size of the video image size.

Releases

January, 2022

  • Initial Release
  • JetPack 4.6, L4T 32.6.1
  • Test on Jetson Nano, Jetson Xavier NX - Other Jetsons should work
Owner
Jetsonhacks
Code for NVIDIA Jetson Developer Kits. Please note that Jetson Nano code is on https://github.com/jetsonhacksnano
Jetsonhacks
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022