Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

Overview

CNNs fruits360

GitHub GitHub Repo stars GitHub repo size

Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNN on a pretrained model

Build a CNN on a pretrained model, ResNet50.
Finetune the pretrained model when training my CNN.

定義卷積神經網路架構:

def fruit_model_on_pretrained(height,width,channel):
    model = Sequential(name="fruit_pretrained")

    pretrained = tf.keras.applications.resnet.ResNet50(include_top=False,input_shape=(100,100,3))
    model.add(pretrained)
    model.add(tf.keras.layers.GlobalAveragePooling2D())
    model.add(Dense(16, activation='relu'))
    model.add(Dense(16, activation='relu'))
    model.add(Dense(2,activation='softmax'))
    pretrained.trainable = False
    model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),optimizer='adam', metrics=['accuracy'])
    return model

    model = fruit_model_on_pretrained(100,100,3)
    model.summary()

CNN's neural architecture include ResBlock

Build a CNN whose neural architecture includes ResBlock.

定義卷積神經網路架構:

images = keras.layers.Input(x_train.shape[1:])

x = keras.layers.Conv2D(filters=16, kernel_size=[1,1], padding='same')(images)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_1")(net)
x = keras.layers.Conv2D(filters=32, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])net=keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_2")(net)

x = keras.layers.Conv2D(filters=64, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.Activation("relu", name="block_3")(net)

net = keras.layers.BatchNormalization()(net)
net = keras.layers.Dropout(0.25)(net)

net = keras.layers.GlobalAveragePooling2D()(net)
net = keras.layers.Dense(units=nclasses,activation="softmax")(net)

model = keras.models.Model(inputs=images,outputs=net)
model.summary()

License:MIT

This package is MIT licensed.

Owner
Ricky Chuang
Google DSC Lead at NTOU
Ricky Chuang
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022