Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

Overview

CNNs fruits360

GitHub GitHub Repo stars GitHub repo size

Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNN on a pretrained model

Build a CNN on a pretrained model, ResNet50.
Finetune the pretrained model when training my CNN.

定義卷積神經網路架構:

def fruit_model_on_pretrained(height,width,channel):
    model = Sequential(name="fruit_pretrained")

    pretrained = tf.keras.applications.resnet.ResNet50(include_top=False,input_shape=(100,100,3))
    model.add(pretrained)
    model.add(tf.keras.layers.GlobalAveragePooling2D())
    model.add(Dense(16, activation='relu'))
    model.add(Dense(16, activation='relu'))
    model.add(Dense(2,activation='softmax'))
    pretrained.trainable = False
    model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),optimizer='adam', metrics=['accuracy'])
    return model

    model = fruit_model_on_pretrained(100,100,3)
    model.summary()

CNN's neural architecture include ResBlock

Build a CNN whose neural architecture includes ResBlock.

定義卷積神經網路架構:

images = keras.layers.Input(x_train.shape[1:])

x = keras.layers.Conv2D(filters=16, kernel_size=[1,1], padding='same')(images)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_1")(net)
x = keras.layers.Conv2D(filters=32, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])net=keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_2")(net)

x = keras.layers.Conv2D(filters=64, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.Activation("relu", name="block_3")(net)

net = keras.layers.BatchNormalization()(net)
net = keras.layers.Dropout(0.25)(net)

net = keras.layers.GlobalAveragePooling2D()(net)
net = keras.layers.Dense(units=nclasses,activation="softmax")(net)

model = keras.models.Model(inputs=images,outputs=net)
model.summary()

License:MIT

This package is MIT licensed.

Owner
Ricky Chuang
Google DSC Lead at NTOU
Ricky Chuang
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Nicholas Lee 3 Jan 09, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022