MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Related tags

Deep LearningMoCoPnet
Overview

Deformable 3D Convolution for Video Super-Resolution

Pytorch implementation of local motion and contrast prior driven deep network (MoCoPnet). [PDF]

Overview


Requirements

  • Python 3
  • pytorch >= 1.6
  • numpy, PIL

Datasets

Training & test datasets

Download SAITD dataset.

SAITD dataset is a large-scale high-quality semi-synthetic dataset of infrared small target. We employ the 1st-50th sequences with target annotations as the test datasets and the remaining 300 sequences as the training datasets.

Download Hui and Anti-UAV.

Hui and Anti-UAV datasets are used as the test datasets to test the robustness of our MoCoPnet to real scenes. In Anti-UAV dataset, only the sequences with infrared small target (i.e., The target size is less than 0.12% of the image size) are selected as the test set (21 sequences in total). Note that, we only use the first 100 images of each sequence for test to balance computational/time cost and generalization performance.

For simplicity, you can also Download the test datasets in https://pan.baidu.com/s/1oobhklwIChvNJIBpTcdQRQ?pwd=1113 and put the folder in code/data.

Data format:

  1. The training dataset is in code/data/train/SAITD.
train
  └── SAITD
       └── 1
              ├── 0.png
              ├── 1.png
              ├── ...
       └── 2
              ├── 00001
              ├── 00002
              ├── ...		
       ...
  1. The test datasets are in code/data/test as below:
 test
  └── dataset_1
         └── scene_1
              ├── 0.png  
              ├── 1.png  
              ├── ...
              └── 100.png    
               
         ├── ...		  
         └── scene_M
  ├── ...    
  └── dataset_N      

Results

Quantitative Results of SR performance

Table 1. PSNR/SSIM achieved by different methods.

Table 2. SNR and CR results of different methods achieved on super-resolved LR images and super-resolved HR images.

Qualitative Results of SR performance

Figure 1. Visual results of different SR methods on LR images for 4x SR.

Figure 2. Visual results of different SR methods on LR images for 4x SR.

Quantitative Results of detection

Table 3. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved LR images.

Table 4. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved HR images.

Figure 3. ROC results of Tophat, ILCM and IPI achieved on super-resolved LR images.

Figure 4. ROC results of Tophat, ILCM and IPI achieved on super-resolved HR images.

Qualitative Results of detection

Figure 5. Qualitative results of super-resolved LR image and detection results.

Figure 6. Qualitative results of super-resolved HR image and detection results.

Citiation

@article{MoCoPnet,
  author = {Ying, Xinyi and Wang, Yingqian and Wang, Longguang and Sheng, Weidong and Liu, Li and Lin, Zaipin and Zhou, Shilin},
  title = {MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution},
  journal={arXiv preprint arXiv:2201.01014},
  year = {2020},
}

Contact

Please contact us at [email protected] for any question.

Owner
Xinyi Ying
Her current research interests focus on image & video super-resolution and small target detection.
Xinyi Ying
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022