This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Overview

Occupancy Flow

This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{OccupancyFlow,
    title = {Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics},
    author = {Niemeyer, Michael and Mescheder, Lars and Oechsle, Michael and Geiger, Andreas},
    booktitle = {Proc. of the IEEE International Conf. on Computer Vision (ICCV)},
    year = {2019}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create and activate an anaconda environment called oflow using

conda env create -f environment.yaml
conda activate oflow

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

You can test our code on the provided input point cloud sequences in the demo/ folder. To this end, simple run

python generate.py configs/demo.yaml

This script should create a folder out/demo/ where the output is stored.

Dataset

Point-based Data

To train a new model from scratch, you have to download the full dataset. You can download the pre-processed data (~42 GB) using

bash scripts/download_data.sh

The script will download the point-based point-based data for the Dynamic FAUST (D-FAUST) dataset to the data/ folder.

Please note: We do not provide the renderings for the 4D reconstruction from image sequences experiment nor the meshes for the interpolation and generative tasks due to privacy regulations. We outline how you can download the mesh data in the following.

Mesh Data

Please follow the instructions on D-FAUST homepage to download the "female and male registrations" as well as "scripts to load / parse the data". Next, follow their instructions in the scripts/README.txt file to extract the obj-files of the sequences. Once completed, you should have a folder with the following structure:


your_dfaust_folder/
| 50002_chicken_wings/
    | 00000.obj
    | 00001.obj
    | ...
    | 000215.obj
| 50002_hips/
    | 00000.obj
    | ...
| ...
| 50027_shake_shoulders/
    | 00000.obj
    | ...


You can now run

bash scripts/migrate_dfaust.sh path/to/your_dfaust_folder

to copy the mesh data to the dataset folder. The argument has to be the folder to which you have extracted the mesh data (the your_dfaust_folder from the directory tree above).

Usage

When you have installed all dependencies and obtained the preprocessed data, you are ready to run our pre-trained models and train new models from scratch.

Generation

To start the normal mesh generation process using a trained model, use

python generate.py configs/CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

The easiest way is to use a pretrained model. You can do this by using one of the config files

configs/pointcloud/oflow_w_correspond_pretrained.yaml
configs/interpolation/oflow_pretrained.yaml
configs/generative/oflow_pretrained.yaml

Our script will automatically download the model checkpoints and run the generation. You can find the outputs in the out/ folder.

Please note that the config files *_pretrained.yaml are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

Generation - Generative Tasks

For model-specific latent space interpolations and motion transfers, you first have to run

python encode_latent_motion_space.py config/generative/CONFIG.yaml

Next, you can call

python generate_latent_space_interpolation.py config/generative/CONFIG.yaml

or

python generate_motion_transfer.py config/generative/CONFIG.yaml

Please note: Make sure that you use the appropriate model for the generation processes, e.g. the latent space interpolations and motion transfers can only be generated with a generative model (e.g. configs/generative/oflow_pretrained.yaml).

Evaluation

You can evaluate the generated output of a model on the test set using

python eval.py configs/CONFIG.yaml

The evaluation results will be saved to pickle and csv files.

Training

Finally, to train a new network from scratch, run

python train.py configs/CONFIG.yaml

You can monitor the training process on http://localhost:6006 using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs --port 6006

where you replace OUTPUT_DIR with the respective output directory. For available training options, please have a look at config/default.yaml.

Further Information

Implicit Representations

If you like the Occupancy Flow project, please check out our similar projects on inferring 3D shapes (Occupancy Networks) and texture (Texture Fields).

Neural Ordinary Differential Equations

If you enjoyed our approach using differential equations, checkout Ricky Chen et. al.'s awesome implementation of differentiable ODE solvers which we used in our project.

Dynamic FAUST Dataset

We applied our method to the cool Dynamic FAUST dataset which contains sequences of real humans performing various actions.

[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022