This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

Related tags

Deep LearningCET
Overview

Context-aware Entity Typing in Knowledge Graphs

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

Requirements

  • Python 3
  • PyTorch >= 1.6.0
  • dgl >= 0.5.3

Usage

Data preprocessing:

cd data
python preprocess.py --dataset FB15kET
python preprocess.py --dataset YAGO43kET

Train:

########### FB15kET ###########
# CET
python run.py --model CET --dataset FB15kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --temperature 0.5 --lr 0.001 --loss FNA --beta 4.0 --cuda

# R-GCN
python run.py --model RGCN --dataset FB15kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --beta 3.0 --cuda

# CompGCN
python run.py --model CompGCN --dataset FB15kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --activation relu --cuda

########### YAGO43kET ###########
# CET
python run.py --model CET --dataset YAGO43kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --temperature 0.5 --lr 0.001 --loss FNA --beta 2.0 --cuda

# R-GCN
python run.py --model RGCN --dataset YAGO43kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --beta 2.0 --cuda

# CompGCN
python run.py --model CompGCN --dataset YAGO43kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --activation relu --cuda

The KGE baselines can be found in KGE_baselines.

Acknowledgement

We refer to the code of DGL. Thanks for their contributions.

A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent PeƱafiel

Gregory 1 Jan 18, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022