Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Overview

Inter-Prototype (BMVC 2021): Official Project Webpage

This repository provides the official PyTorch implementation of the following paper:

Improving Face Recognition with Large Age Gaps by Learning to Distinguish Children
Jungsoo Lee* (KAIST AI), Jooyeol Yun* (KAIST AI), Sunghyun Park (KAIST AI),
Yonggyu Kim (Korea Univ.), and Jaegul Choo (KAIST AI) (*: equal contribution)
BMVC 2021

Paper: Arxiv

Abstract: Despite the unprecedented improvement of face recognition, existing face recognition models still show considerably low performances in determining whether a pair of child and adult images belong to the same identity. Previous approaches mainly focused on increasing the similarity between child and adult images of a given identity to overcome the discrepancy of facial appearances due to aging. However, we observe that reducing the similarity between child images of different identities is crucial for learning distinct features among children and thus improving face recognition performance in child-adult pairs. Based on this intuition, we propose a novel loss function called the Inter-Prototype loss which minimizes the similarity between child images. Unlike the previous studies, the Inter-Prototype loss does not require additional child images or training additional learnable parameters. Our extensive experiments and in-depth analyses show that our approach outperforms existing baselines in face recognition with child-adult pairs.

Code Contributors

Jungsoo Lee [Website] [LinkedIn] [Google Scholar] (KAIST AI)
Jooyeol Yun [LinkedIn] [Google Scholar] (KAIST AI)

Pytorch Implementation

Installation

Clone this repository.

git clone https://github.com/leebebeto/Inter-Prototype.git
cd Inter-Prototype
pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0 python3 train.py --data_mode=casia --exp=interproto_casia --wandb --tensorboard

How to Run

We used two different training datasets: 1) CASIA WebFace and 2) MS1M.

We constructed test sets with child-adult pairs with at least 20 years and 30 years age gaps using AgeDB and FG-NET, termed as AgeDB-C20, AgeDB-C30, FGNET-C20, and FGNET-C30. We also used LAG (Large Age Gap) dataset for the test set. For the age labels, we used the age annotations from MTLFace. The age annotations are available at this link. We provide a script file for downloading the test dataset.

sh scripts/download_test_data.sh

The final structure before training or testing the model should look like this.

train
 └ casia
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ ms1m
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ age-label
   └ casia-webface.txt
   └ ms1m.txt    
test
 └ AgeDB-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...
 └ FGNET-aligned
   └ image1.jpg
   └ image2.jpg
   └ ...
 └ LAG-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...

Pretrained Models

All models trained for our paper

Following are the checkpoints of each test set used in our paper.

Trained with Casia WebFace

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

Trained with MS1M

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

CUDA_VISIBLE_DEVICES=0 python3 evaluate.py --model_dir=<test_dir>

Quantitative / Qualitative Evaluation

Trained with CASIA WebFace dataset

Trained with MS1M dataset

t-SNE embedding of prototype vectors

Acknowledgments

Our pytorch implementation is heavily derived from InsightFace_Pytorch. Thanks for the implementation. We also deeply appreciate the age annotations provided by Huang et al. in MTLFace.

Owner
Jungsoo Lee
I'm interested in the intersection of Computer Vision and HCI.
Jungsoo Lee
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022