Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Overview

Inter-Prototype (BMVC 2021): Official Project Webpage

This repository provides the official PyTorch implementation of the following paper:

Improving Face Recognition with Large Age Gaps by Learning to Distinguish Children
Jungsoo Lee* (KAIST AI), Jooyeol Yun* (KAIST AI), Sunghyun Park (KAIST AI),
Yonggyu Kim (Korea Univ.), and Jaegul Choo (KAIST AI) (*: equal contribution)
BMVC 2021

Paper: Arxiv

Abstract: Despite the unprecedented improvement of face recognition, existing face recognition models still show considerably low performances in determining whether a pair of child and adult images belong to the same identity. Previous approaches mainly focused on increasing the similarity between child and adult images of a given identity to overcome the discrepancy of facial appearances due to aging. However, we observe that reducing the similarity between child images of different identities is crucial for learning distinct features among children and thus improving face recognition performance in child-adult pairs. Based on this intuition, we propose a novel loss function called the Inter-Prototype loss which minimizes the similarity between child images. Unlike the previous studies, the Inter-Prototype loss does not require additional child images or training additional learnable parameters. Our extensive experiments and in-depth analyses show that our approach outperforms existing baselines in face recognition with child-adult pairs.

Code Contributors

Jungsoo Lee [Website] [LinkedIn] [Google Scholar] (KAIST AI)
Jooyeol Yun [LinkedIn] [Google Scholar] (KAIST AI)

Pytorch Implementation

Installation

Clone this repository.

git clone https://github.com/leebebeto/Inter-Prototype.git
cd Inter-Prototype
pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0 python3 train.py --data_mode=casia --exp=interproto_casia --wandb --tensorboard

How to Run

We used two different training datasets: 1) CASIA WebFace and 2) MS1M.

We constructed test sets with child-adult pairs with at least 20 years and 30 years age gaps using AgeDB and FG-NET, termed as AgeDB-C20, AgeDB-C30, FGNET-C20, and FGNET-C30. We also used LAG (Large Age Gap) dataset for the test set. For the age labels, we used the age annotations from MTLFace. The age annotations are available at this link. We provide a script file for downloading the test dataset.

sh scripts/download_test_data.sh

The final structure before training or testing the model should look like this.

train
 └ casia
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ ms1m
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ age-label
   └ casia-webface.txt
   └ ms1m.txt    
test
 └ AgeDB-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...
 └ FGNET-aligned
   └ image1.jpg
   └ image2.jpg
   └ ...
 └ LAG-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...

Pretrained Models

All models trained for our paper

Following are the checkpoints of each test set used in our paper.

Trained with Casia WebFace

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

Trained with MS1M

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

CUDA_VISIBLE_DEVICES=0 python3 evaluate.py --model_dir=<test_dir>

Quantitative / Qualitative Evaluation

Trained with CASIA WebFace dataset

Trained with MS1M dataset

t-SNE embedding of prototype vectors

Acknowledgments

Our pytorch implementation is heavily derived from InsightFace_Pytorch. Thanks for the implementation. We also deeply appreciate the age annotations provided by Huang et al. in MTLFace.

Owner
Jungsoo Lee
I'm interested in the intersection of Computer Vision and HCI.
Jungsoo Lee
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022