This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

Overview

OpenSurfaces Segmentation UI

This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool. A dummy server backend is included to run the demo.

You can also view the demo online.

To run the demo, there are two versions: one with django, and one with no framework. The django version uses a dummy django server and compiles the website live as necessary. The non-django version is a flat html file extracted from the django version.

If you find this tool helpful, please cite our project:

@inproceedings{bell13opensurfaces,
	author = "Sean Bell and Paul Upchurch and Noah Snavely and Kavita Bala",
	title = "OpenSurfaces: A Richly Annotated Catalog of Surface Appearance",
	booktitle = "SIGGRAPH Conf. Proc.",
	volume = "32",
	number = "4",
	year = "2013",
}

and report any bugs using the GitHub issue tracker. Also, please "star" this project on GitHub; it's nice to see how many people are using our code.

Version 1: Run with Django (Ubuntu Linux)

  1. Install dependencies (coffee-script, django, django-compressor, ua-parser, BeautifulSoup):

    Note: this will change your django current installation if you are not somewhere between 1.4.* and 1.6.*. I suggest looking into the virtualenv package if this is a problem for you.

./django-setup-demo.sh
  1. Start the local webserver:
./django-run-demo.sh
  1. Visit localhost:8000 in a web browser

To get the demo to work on Mac and Windows, you will have to look at the above scripts and run the equivalent commands for your system.

After drawing 6 polygons, the submit button will show you the POST data that would have been sent to the server.

Version 2: Run without Django (Linux or Mac)

  1. Install npm and node.js. On Ubuntu, this is:
sudo apt-get install npm nodejs
  1. Install coffee-script:
sudo npm install -g coffee-script
  1. Build static files (js, css, img) and then start a local python-based webserver:
./python-run-demo.sh
  1. Visit localhost:8000 in a web browser

To get the demo to work on Windows, you will have to look at the above scripts and run the equivalent commands for your system.

Project Notes

POST data

When a user submits, the client will POST the data to the same URL. On success, the client expects the JSON response {"message": "success", "result": "success"}. The client will then notify the MTurk server that the task is completed. For more details, see example_project/segmentation/views.py.

When a user submits, the POST will contain these fields:

results: a dictionary mapping from the photo ID (which is just "1" in
	this example) to a list of polygons.  Example:
	{"1": [[x1,y1,x2,y2,x3,y3,...], [x1,y1,x2,y2,...]]}.
	Coordinates are scaled with respect to the source photo dimensions, so both
	x and y are in the range 0 to 1.

time_ms: amount of time the user spent (whether or not they were active)

time_active_ms: amount of time that the user was active in the current window

action_log: a JSON-encoded log of user actions

screen_width: user screen width

screen_height: user screen height

version: always "1.0"

feedback: omitted if there is no feedback; JSON encoded dictionary of the form:
{
	'thoughts': user's response to "What did you think of this task?",
	'understand': user's response to "What parts didn't you understand?",
	'other': user's response to "Any other feedback, improvements, or suggestions?"
}

Feedback survey

When the user finishes the task, a popup will ask for feedback. In the django version, disable this by setting ask_for_feedback to 'false' in the file example_project/segmentation/vies.py. In the non-django verfsion, update the window.ask_for_feedback variable in index.html.

I recommend asking for feedback after the 2nd or 3rd time a user has submitted, not the first time, and then not asking again (otherwise it gets annoying). Users usually don't have feedback until they have been working for a little while.

Compiling from coffeescript

The javascript for the tool is automatically compiled from coffeescript files by django-compressor and accessed by the client at a url of the form /static/cache/js/*.js. This is set up already if using django.

If not using django, the python-run-demo.sh does this for you by manually compiling coffeescript files and storing them in the /static/ folder.

Browser compatibility

This UI works in Chrome and Firefox only. The Django version includes a browser check that shows an error page if the user is not on Chrome or Firefox or is on a mobile device.

Local /static/ folder

After you run the demo setup, the directory /static/ will contain compiled css and javascript files.

If you are usikng django and change any part of the static files (js, css, images, coffeescript), you will need to repopulate the static folder with this command:

example_project/manage.py collectstatic --noinput

If you are building on top of this repository:

In example_project/settings.py:

  1. Change SECRET_KEY to some random string.
  2. Fill in the rest of the values (admin name, database, etc).

If you want to add this demo to your own (separate) Django project:

In your settings.py file, make the following changes:

  1. Make sure STATIC_ROOT is set to an absolute writable path.

  2. Add this to the STATICFILES_FINDERS tuple:

	'compressor.finders.CompressorFinder',
  1. Add this to the INSTALLED_APPS tuple:
	'django.contrib.humanize',
	'compressor',
	'segmentation',
  1. Add this to settings.py (e.g. at the end):
	# Django Compressor
	COMPRESS_ENABLED = True
	COMPRESS_OUTPUT_DIR = 'cache'
	COMPRESS_PRECOMPILERS = (
		('text/coffeescript', 'coffee --bare --compile --stdio'),
		('text/less', 'lessc -x {infile} {outfile}'),
	)
Owner
Sean Bell
CEO and Co-Founder, GrokStyle Inc. PhD, Cornell University
Sean Bell
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022