This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

Overview

OpenSurfaces Segmentation UI

This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool. A dummy server backend is included to run the demo.

You can also view the demo online.

To run the demo, there are two versions: one with django, and one with no framework. The django version uses a dummy django server and compiles the website live as necessary. The non-django version is a flat html file extracted from the django version.

If you find this tool helpful, please cite our project:

@inproceedings{bell13opensurfaces,
	author = "Sean Bell and Paul Upchurch and Noah Snavely and Kavita Bala",
	title = "OpenSurfaces: A Richly Annotated Catalog of Surface Appearance",
	booktitle = "SIGGRAPH Conf. Proc.",
	volume = "32",
	number = "4",
	year = "2013",
}

and report any bugs using the GitHub issue tracker. Also, please "star" this project on GitHub; it's nice to see how many people are using our code.

Version 1: Run with Django (Ubuntu Linux)

  1. Install dependencies (coffee-script, django, django-compressor, ua-parser, BeautifulSoup):

    Note: this will change your django current installation if you are not somewhere between 1.4.* and 1.6.*. I suggest looking into the virtualenv package if this is a problem for you.

./django-setup-demo.sh
  1. Start the local webserver:
./django-run-demo.sh
  1. Visit localhost:8000 in a web browser

To get the demo to work on Mac and Windows, you will have to look at the above scripts and run the equivalent commands for your system.

After drawing 6 polygons, the submit button will show you the POST data that would have been sent to the server.

Version 2: Run without Django (Linux or Mac)

  1. Install npm and node.js. On Ubuntu, this is:
sudo apt-get install npm nodejs
  1. Install coffee-script:
sudo npm install -g coffee-script
  1. Build static files (js, css, img) and then start a local python-based webserver:
./python-run-demo.sh
  1. Visit localhost:8000 in a web browser

To get the demo to work on Windows, you will have to look at the above scripts and run the equivalent commands for your system.

Project Notes

POST data

When a user submits, the client will POST the data to the same URL. On success, the client expects the JSON response {"message": "success", "result": "success"}. The client will then notify the MTurk server that the task is completed. For more details, see example_project/segmentation/views.py.

When a user submits, the POST will contain these fields:

results: a dictionary mapping from the photo ID (which is just "1" in
	this example) to a list of polygons.  Example:
	{"1": [[x1,y1,x2,y2,x3,y3,...], [x1,y1,x2,y2,...]]}.
	Coordinates are scaled with respect to the source photo dimensions, so both
	x and y are in the range 0 to 1.

time_ms: amount of time the user spent (whether or not they were active)

time_active_ms: amount of time that the user was active in the current window

action_log: a JSON-encoded log of user actions

screen_width: user screen width

screen_height: user screen height

version: always "1.0"

feedback: omitted if there is no feedback; JSON encoded dictionary of the form:
{
	'thoughts': user's response to "What did you think of this task?",
	'understand': user's response to "What parts didn't you understand?",
	'other': user's response to "Any other feedback, improvements, or suggestions?"
}

Feedback survey

When the user finishes the task, a popup will ask for feedback. In the django version, disable this by setting ask_for_feedback to 'false' in the file example_project/segmentation/vies.py. In the non-django verfsion, update the window.ask_for_feedback variable in index.html.

I recommend asking for feedback after the 2nd or 3rd time a user has submitted, not the first time, and then not asking again (otherwise it gets annoying). Users usually don't have feedback until they have been working for a little while.

Compiling from coffeescript

The javascript for the tool is automatically compiled from coffeescript files by django-compressor and accessed by the client at a url of the form /static/cache/js/*.js. This is set up already if using django.

If not using django, the python-run-demo.sh does this for you by manually compiling coffeescript files and storing them in the /static/ folder.

Browser compatibility

This UI works in Chrome and Firefox only. The Django version includes a browser check that shows an error page if the user is not on Chrome or Firefox or is on a mobile device.

Local /static/ folder

After you run the demo setup, the directory /static/ will contain compiled css and javascript files.

If you are usikng django and change any part of the static files (js, css, images, coffeescript), you will need to repopulate the static folder with this command:

example_project/manage.py collectstatic --noinput

If you are building on top of this repository:

In example_project/settings.py:

  1. Change SECRET_KEY to some random string.
  2. Fill in the rest of the values (admin name, database, etc).

If you want to add this demo to your own (separate) Django project:

In your settings.py file, make the following changes:

  1. Make sure STATIC_ROOT is set to an absolute writable path.

  2. Add this to the STATICFILES_FINDERS tuple:

	'compressor.finders.CompressorFinder',
  1. Add this to the INSTALLED_APPS tuple:
	'django.contrib.humanize',
	'compressor',
	'segmentation',
  1. Add this to settings.py (e.g. at the end):
	# Django Compressor
	COMPRESS_ENABLED = True
	COMPRESS_OUTPUT_DIR = 'cache'
	COMPRESS_PRECOMPILERS = (
		('text/coffeescript', 'coffee --bare --compile --stdio'),
		('text/less', 'lessc -x {infile} {outfile}'),
	)
Owner
Sean Bell
CEO and Co-Founder, GrokStyle Inc. PhD, Cornell University
Sean Bell
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022