Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Overview

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021)

Paper

Introduction

The conventional detectors tend to make imbalanced classification and suffer performance drop, when the distribution of the training data is severely skewed. In this paper, we propose to use the mean classification score to indicate the classification accuracy for each category during training. Based on this indicator, we balance the classification via an Equilibrium Loss (EBL) and a Memory-augmented Feature Sampling (MFS) method. Specifically, EBL increases the intensity of the adjustment of the decision boundary for the weak classes by a designed score-guided loss margin between any two classes. On the other hand, MFS improves the frequency and accuracy of the adjustments of the decision boundary for the weak classes through over-sampling the instance features of those classes. Therefore, EBL and MFS work collaboratively for finding the classification equilibrium in long-tailed detection, and dramatically improve the performance of tail classes while maintaining or even improving the performance of head classes. We conduct experiments on LVIS using Mask R-CNN with various backbones including ResNet-50-FPN and ResNet-101-FPN to show the superiority of the proposed method. It improves the detection performance of tail classes by 15.6 AP, and outperforms the most recent long-tailed object detectors by more than 1 AP.

Method overview

method overview

Memory-augmented Feature Sampling (MFS)

method overview

Prerequisites

  • MMDetection version 2.8.0.

  • Please see get_started.md for installation and the basic usage of MMDetection.

Train

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with LVIS v1.0 dataset in 'data/lvis_v1/'.
# use decoupled training pipeline:

# 1. train the model with Mask R-CNN
./tools/dist_train.sh configs/loce/mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

# 2. fine-tune the model with LOCE
./tools/dist_train.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

Inference

./tools/dist_test.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py work_dirs/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1/epoch_6.pth 8 --eval bbox segm

Models

For your convenience, we provide the following trained models (LOCE). All models are trained with 16 images in a mini-batch.

Model Dataset MS train box AP mask AP Pretrained Model LOCE
LOCE_R_50_FPN_2x LVIS v0.5 Yes 28.2 28.4 config / model config / model
LOCE_R_50_FPN_2x LVIS v1.0 Yes 27.4 26.6 config / model config / model
LOCE_R_101_FPN_2x LVIS v1.0 Yes 29.0 28.0 config / model config / model

[0] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[1] Refer to more details in config files in config/loce/.

Acknowledgement

Thanks MMDetection team for the wonderful open source project!

Citation

If you find LOCE useful in your research, please consider citing:

@inproceedings{feng2021exploring,
    title={Exploring Classification Equilibrium in Long-Tailed Object Detection},
    author={Feng, Chengjian and Zhong, Yujie and Huang, Weilin},
    booktitle={ICCV},
    year={2021}
}
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022