CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

Overview

PyPI - Python Version GitHub Workflow Status Read the Docs Code style: black

CARLA - Counterfactual And Recourse Library

CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the box with commonly used datasets and various machine learning models. Designed with extensibility in mind: Easily include your own counterfactual methods, new machine learning models or other datasets.

Find extensive documentation here! Our arXiv paper can be found here.

Available Datasets

Implemented Counterfactual Methods

  • Actionable Recourse (AR): Paper
  • CCHVAE: Paper
  • Contrastive Explanations Method (CEM): Paper
  • Counterfactual Latent Uncertainty Explanations (CLUE): Paper
  • CRUDS: Paper
  • Diverse Counterfactual Explanations (DiCE): Paper
  • Feasible and Actionable Counterfactual Explanations (FACE): Paper
  • Growing Sphere (GS): Paper
  • Revise: Paper
  • Wachter: Paper

Provided Machine Learning Models

  • ANN: Artificial Neural Network with 2 hidden layers and ReLU activation function
  • LR: Linear Model with no hidden layer and no activation function

Which Recourse Methods work with which ML framework?

The framework a counterfactual method currently works with is dependent on its underlying implementation. It is planned to make all recourse methods available for all ML frameworks . The latest state can be found here:

Recourse Method Tensorflow Pytorch
Actionable Recourse X X
CCHVAE X
CEM X
CLUE X
CRUDS X
DiCE X X
FACE X X
Growing Spheres X X
Revise X
Wachter X

Installation

Requirements

  • python3.7
  • pip

Install via pip

pip install carla-recourse

Usage Example

from carla import DataCatalog, MLModelCatalog
from carla.recourse_methods import GrowingSpheres

# load a catalog dataset
data_name = "adult"
dataset = DataCatalog(data_name)

# load artificial neural network from catalog
model = MLModelCatalog(dataset, "ann")

# get factuals from the data to generate counterfactual examples
factuals = dataset.raw.iloc[:10]

# load a recourse model and pass black box model
gs = GrowingSpheres(model)

# generate counterfactual examples
counterfactuals = gs.get_counterfactuals(factuals)

Contributing

Requirements

  • python3.7-venv (when not already shipped with python3.7)
  • Recommended: GNU Make

Installation

Using make:

make requirements

Using python directly or within activated virtual environment:

pip install -U pip setuptools wheel
pip install -e .

Testing

Using make:

make test

Using python directly or within activated virtual environment:

pip install -r requirements-dev.txt
python -m pytest test/*

Linting and Styling

We use pre-commit hooks within our build pipelines to enforce:

  • Python linting with flake8.
  • Python styling with black.

Install pre-commit with:

make install-dev

Using python directly or within activated virtual environment:

pip install -r requirements-dev.txt
pre-commit install

Licence

carla is under the MIT Licence. See the LICENCE for more details.

Citation

This project was recently accepted to NeurIPS 2021 (Benchmark & Data Sets Track). If you use this codebase, please cite:

@misc{pawelczyk2021carla,
      title={CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms},
      author={Martin Pawelczyk and Sascha Bielawski and Johannes van den Heuvel and Tobias Richter and Gjergji Kasneci},
      year={2021},
      eprint={2108.00783},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Carla Recourse
Carla Recourse
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022