Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Overview

MViTs Excel at Class-agnostic Object Detection

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer and Ming-Hsuan Yang

Paper: https://arxiv.org/abs/2111.11430


main figure

Abstract: What constitutes an object? This has been a long-standing question in computer vision. Towards this goal, numerous learning-free and learning-based approaches have been developed to score objectness. However, they generally do not scale well across new domains and for unseen objects. In this paper, we advocate that existing methods lack a top-down supervision signal governed by human-understandable semantics. To bridge this gap, we explore recent Multi-modal Vision Transformers (MViT) that have been trained with aligned image-text pairs. Our extensive experiments across various domains and novel objects show the state-of-the-art performance of MViTs to localize generic objects in images. Based on these findings, we develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention that can adaptively generate proposals given a specific language query. We show the significance of MViT proposals in a diverse range of applications including open-world object detection, salient and camouflage object detection, supervised and self-supervised detection tasks. Further, MViTs offer enhanced interactability with intelligible text queries.


Architecture overview of MViTs used in this work

Architecture overview


Results


Class-agnostic OD performance of MViTs in comparison with uni-modal detector (RetinaNet) on several datasets. MViTs show consistently good results on all datasets.

Results


Enhanced Interactability: Effect of using different intuitive text queries on the MDef-DETR class-agnostic OD performance. Combining detections from multiple queries captures varying aspects of objectness.

Results


Generalization to Rare/Novel Classes: MDef-DETR class-agnostic OD performance on rarely and frequently occurring categories in the pretraining captions. The numbers on top of the bars indicate occurrences of the corresponding category in the training dataset. The MViT achieves good recall values even for the classes with no or very few occurrences.

Results


Open-world Object Detection: Effect of using class-agnostic OD proposals from MDef-DETR for pseudo labelling of unknowns in Open World Detector (ORE).

Results


Pretraining for Class-aware Object Detection: Effect of using MDef-DETR proposals for pre-training of DETReg instead of Selective Search proposals.

Results


Evaluation

The provided codebase contains the pre-computed detections for all datasets using ours MDef-DETR model. The provided directory structure is as follows,

-> README.md
-> LICENSE
-> get_eval_metrics.py
-> get_multi_dataset_eval_metrics.py
-> data
    -> voc2007
        -> combined.pkl
    -> coco
        -> combined.pkl
    -> kitti
        -> combined.pkl
    -> kitchen
        -> combined.pkl
    -> cliaprt
        -> combined.pkl
    -> comic
        -> combined.pkl
    -> watercolor
        -> combined.pkl
    -> dota
        -> combined.pkl

Where combined.pkl contains the combined detections from multiple intutive text queries for corresponding datasets. (Refer Section 5.1: Enhanced Interactability for more details)

Download the annotations for all datasets and arrange them as shown below. Note that the script expect COCO annotations in standard COCO format & annotations of all other datasets in VOC format.

...
...
-> data
    -> voc2007
        -> combined.pkl
        -> Annotations
    -> coco
        -> combined.pkl
        -> instances_val2017_filt.json
    -> kitti
        -> combined.pkl
        -> Annotations
        ...
    -> kitchen
        -> combined.pkl
        -> Annotations
    -> cliaprt
        -> combined.pkl
        -> Annotations
    -> comic
        -> combined.pkl
        -> Annotations
    -> watercolor
        -> combined.pkl
        -> Annotations
    -> dota
        -> combined.pkl
        -> Annotations

Once the above mentioned directory structure is created, follow the following steps to calculate the metrics.

  1. Install numpy
$ pip install numpy
  1. Calculate metrics
$ python get_multi_dataset_eval_metrics.py

The calculated metrics will be stored in a data.csv file in the same directory.


Citation

If you use our work, please consider citing:

@article{Maaz2021Multimodal,
    title={Multi-modal Transformers Excel at Class-agnostic Object Detection},
    author={Muhammad Maaz and Hanoona Rasheed and Salman Khan and Fahad Shahbaz Khan and Rao Muhammad Anwer and Ming-Hsuan Yang},
    journal={ArXiv 2111.11430},
    year={2021}
}

Contact

Should you have any question, please contact [email protected] or [email protected]

🚀 Note: The repository contains the minimum evaluation code. The complete training and inference scripts along with pretrained models will be released soon. Stay Tuned!

Comments
  • aligning image text pairs

    aligning image text pairs

    I have a question on the paper: you train on aligned image-text pairs. How do you create this alignment? is it the same way as in MDeTr? I did not fully understand from the paper, especially for non-natural images like satellite images or medical images.

    opened by nikky4D 6
  • Loading checkpoints for inference

    Loading checkpoints for inference

    Which checkpoints in drive link you provided will load correctly in default MDefDETR model without any errors? Im getting missing/unexpected keys errors.

    documentation 
    opened by KaleemW 4
  • Is EMA used in this work?

    Is EMA used in this work?

    Hello author, thanks for your great work. I raise a question about the usage of Exponential Moving Average (EMA) in this paper, hoping you can provide me with some clues. It seems that this paper does not detail in this part. As far as I know, MDETR uses it and evaluate use the EMA model. So I wonder is it used in this work? If it is actually used, why should we evaluate by the EMA model rather than the original one?

    opened by JacobYuan7 4
  • one of the variables needed for gradient computation has been modified by an inplace operation

    one of the variables needed for gradient computation has been modified by an inplace operation

    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.LongTensor [2, 20]] is at version 3; expected version 2 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

    This error will terminate the training procedure when training mdef_detr using the PyTorch environment as you advise(torch==1.8.0+cu111).

    And I found the variables of 'transformer.text_encoder.pooler.dense.weight' does not have grad. This may be the main reason for this error.

    opened by xushilin1 2
  • Loading the Faster RCNN checkpoint

    Loading the Faster RCNN checkpoint

    Greetings

    The readme states: (Feb 01, 2022) Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link

    Following the link to the google drive, only provides me with the model weight for the Faster-RCNN, but not with instructions on how to load it and which framework to use. I have tried creating a Faster-RCNN-resnet101 model with pytorch, but when I load the model weight, it states that the layer names does not match. Any guidance would be much appreciated.

    Best regards Martin

    uni-modal-detectors 
    opened by MartinPedersenpp 2
  • Need to understand how to import weights

    Need to understand how to import weights

    Hello,

    Firstly, I'd like to congratulate you for bringing this amazing work. Class agnostic object detection is much needed currently in the industry and this would be a great way to solve the problem.

    I wanted to test your model on some custom data. However, I cannot import pre-trained weights from the link you have provided. I can see the zip file but I couldn't find a way to import them. I'm using OpenCV to import weights. It is asking me to have a config file as well as .weights file.

    Could you please help me which library to use to import weights when I'm working on a jupyter notebook?

    Thank you,

    opened by abhi-vellala 2
  • pretrain data download

    pretrain data download

    if is it possible to split pretrain data into multiple seperate zip files。 I download data from google drive : https://drive.google.com/drive/folders/1-3kAsyZIVFbNelRXrF93Y5tMgOypv2jV i cannot download this data because of google drive time limit(less than 1 hours) and my limit network bandwidth。

    documentation 
    opened by zhouxingguang 1
  • Training code release

    Training code release

    This pull request adds

    • Training codes for MDef-DETR and MDef-DETR minus Language models
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications
    • All the pre-trained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results
    opened by mmaaz60 0
  • Questions about your training procedure?

    Questions about your training procedure?

    To my understanding, I think you use image-text pairs as inputs and only bbox annotations as supervision signals without any class labels, does it right?

    opened by GYslchen 1
  • Questions about your pretrained model

    Questions about your pretrained model

    Does the pre-trained model you provide cover the categories on LVIS data? If I want to do open-world object detection on the LVIS dataset, can I directly use your pre-trained model to generate the proposals or should I need to filter the dataset so that it doesn't contain any object in the LVIS dataset?

    opened by chengsilin 1
  • how to generate 'tokens_positive'  ann from detector dataset like object365?

    how to generate 'tokens_positive' ann from detector dataset like object365?

    I found 'tokens_positive' was used in your ann file. could you please release the code of how to process detect data like coco to get the 'tokens_positive' ann results?

    documentation 
    opened by zhouxingguang 1
Releases(v1.0)
  • v1.0(Feb 1, 2022)

    • Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md
    • All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link
    Source code(tar.gz)
    Source code(zip)
  • v0.1(Nov 25, 2021)

    Evaluation Code & Pre-trained Models

    • Releases evaluation code for MDef-DETR and 'MDef-DETR w/o Language Branch' model
    • Releases the pre-trained weights for both models
    • Releases the pre-computed predictions for both the models
    Source code(tar.gz)
    Source code(zip)
Owner
Muhammad Maaz
An Electrical Engineer with experience in Computer Vision software development. Skilled in Machine Learning, Deep Learning and Computer Vision.
Muhammad Maaz
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022