MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

Related tags

Deep Learningmplp
Overview

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

Results on MAG240M

Here, we demonstrate the following performance on the MAG240M dataset from [email protected] 2021.

Model Test Acc Validation Acc Parameters Hardware
Our Model 0.7447 0.7669 ± 0.0003 (ensemble 0.7696) 743,449 Tesla V100 (21GB)

Reproducing results

0. Requirements

Here just list python3 packages we used in this competition:

numpy==1.19.2
torch==1.5.1+cu101
dgl-cu101==0.6.0.post1
ogb==1.3.1
sklearn==0.23.2
tqdm==4.46.1

1. Prepare Graph and Features

The preprocess code modifed from dgl baseline. We created graph with 6 different edge types instead of 5.

# Time cost: 3hours,30mins

python3 $MAG_CODE_PATH/preprocess.py
        --rootdir $MAG_INPUT_PATH \
        --author-output-path $MAG_PREP_PATH/author.npy \
        --inst-output-path $MAG_PREP_PATH/inst.npy \
        --graph-output-path $MAG_PREP_PATH \
        --graph-as-homogeneous \
        --full-output-path $MAG_PREP_PATH/full_feat.npy

The graphs and features will be saved in MAG_PREP_PATH , where the MAG_PREP_PATH is specified in run.sh.

Calculate features

The meta-path based features are generated by this script. Details can be found in our technical report.

# Time cost: 2hours,20mins (only generate label related features)

python3 $MAG_CODE_PATH/feature.py
        $MAG_INPUT_PATH \
        $MAG_PREP_PATH/dgl_graph_full_heterogeneous_csr.bin \
        $MAG_FEAT_PATH \
        --seed=42

Train RGAT model and prepare RGAT features

The RGAT model is modifed from dgl baseline. The validation accuracy is 0.701 , as same as described in the dgl baseline github.

# Time cost: 33hours,40mins (20mins for each epoch)

python3 $MAG_CODE_PATH/rgat.py
        --rootdir $MAG_INPUT_PATH \
        --graph-path $MAG_PREP_PATH/dgl_graph_full_homogeneous_csc.bin \
        --full-feature-path $MAG_PREP_PATH/full_feat.npy \
        --output-path $MAG_RGAT_PATH/ \
        --epochs=100 \
        --model-path $MAG_RGAT_PATH/model.pt \
        --submission-path $MAG_RGAT_PATH/

You will get embeddings as input features of the following MPLP models.

2. Train MPLP models

The train process splits to two steps:

  1. train the model with full train samples at a large learning rate (here we use StepLR(lr=0.01, step_size=100, gamma=0.25))
  2. then fine tune the model with latest train samples (eg, paper with year >= 2018) with a small learning rate (0.000625)

You can train the MPLP model by running the following commands:

# Time cost: 2hours,40mins for each seed

for seed in $(seq 0 7);
do
    python3 $MAG_CODE_PATH/mplp.py \
            $MAG_INPUT_PATH \
            $MAG_MPLP_PATH/data/ \
            $MAG_MPLP_PATH/output/seed${seed} \
            --gpu \
            --seed=${seed} \
            --batch_size=10240 \
            --epochs=200 \
            --num_layers=2 \
            --learning_rate=0.01 \
            --dropout=0.5 \
            --num_splits=5
done

3. Ensemble MPLP results

While having all the results with k-fold cross validation training under 8 different seeds, you can average the results by running code below:

python3 $MAG_CODE_PATH/ensemble.py $MAG_MPLP_PATH/output/ $MAG_SUBM_PATH
Owner
Qiuying Peng
Astrophysics -> Data Science
Qiuying Peng
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022