Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Related tags

Deep LearningPPR10K
Overview

Portrait Photo Retouching with PPR10K

Paper | Supplementary Material

PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency
Jie Liang*, Hui Zeng*, Miaomiao Cui, Xuansong Xie and Lei Zhang.
In CVPR 2021.

The proposed Portrait Photo Retouching dataset (PPR10K) is a large-scale and diverse dataset that contains:

  • 11,161 high-quality raw portrait photos (resolutions from 4K to 8K) in 1,681 groups;
  • 3 versions of manual retouched targets of all photos given by 3 expert retouchers;
  • full resolution human-region masks of all photos.

Samples

sample_images

Two example groups of photos from the PPR10K dataset. Top: the raw photos; Bottom: the retouched results from expert-a and the human-region masks. The raw photos exhibit poor visual quality and large variance in subject views, background contexts, lighting conditions and camera settings. In contrast, the retouched results demonstrate both good visual quality (with human-region priority) and group-level consistency.

This dataset is first of its kind to consider the two special and practical requirements of portrait photo retouching task, i.e., Human-Region Priority and Group-Level Consistency. Three main challenges are expected to be tackled in the follow-up researches:

  • Flexible and content-adaptive models for such a diverse task regarding both image contents and lighting conditions;
  • Highly efficient models to process practical resolution from 4K to 8K;
  • Robust and stable models to meet the requirement of group-level consistency.

Agreement

  • All files in the PPR10K dataset are available for non-commercial research purposes only.
  • You agree not to reproduce, duplicate, copy, sell, trade, resell or exploit for any commercial purposes, any portion of the images and any portion of derived data.

Overview

All data is hosted on GoogleDrive, OneDrive and 百度网盘 (验证码: mrwn):

Path Size Files Format Description
PPR10K-dataset 406 GB 176,072 Main folder
├  raw 313 GB 11,161 RAW All photos in raw format (.CR2, .NEF, .ARW, etc)
├  xmp_source 130 MB 11,161 XMP Default meta-file of the raw photos in CameraRaw, used in our data augmentation
├  xmp_target_a 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert a
├  xmp_target_b 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert b
├  xmp_target_c 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert c
├  masks_full 697 MB 11,161 PNG Full-resolution human-region masks in binary format
├  masks_360p 56 MB 11,161 PNG 360p human-region masks for fast training and validation
├  train_val_images_tif_360p 91 GB 97894 TIF 360p Source (16 bit tiff, with 5 versions of augmented images) and target (8 bit tiff) images for fast training and validation
├  pretrained_models 268 MB 12 PTH pretrained models for all 3 versions
└  hists 624KB 39 PNG Overall statistics of the dataset

One can directly use the 360p (of 540x360 or 360x540 resolution in sRGB color space) training and validation files (photos, 5 versions of augmented photos and the corresponding human-region masks) we have provided following the settings in our paper (train with the first 8,875 files and validate with the last 2286 files).
Also, see the instructions to customize your data (e.g., augment the training samples regarding illuminations and colors, get photos with higher or full resolutions).

Training and Validating the PPR using 3DLUT

Installation

  • Clone this repo.
git clone https://github.com/csjliang/PPR10K
cd PPR10K/code_3DLUT/
  • Install dependencies.
pip install -r requirements.txt
  • Build. Modify the CUDA path in trilinear_cpp/setup.sh adaptively and
cd trilinear_cpp
sh trilinear_cpp/setup.sh

Training

  • Training without HRP and GLC strategy, save models:
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask False --output_dir [path_to_save_models]
  • Training with HRP and without GLC strategy, save models:
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir [path_to_save_models]
  • Training without HRP and with GLC strategy, save models:
python train_GLC.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask False --output_dir [path_to_save_models]
  • Training with both HRP and GLC strategy, save models:
python train_GLC.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir [path_to_save_models]

Evaluation

  • Generate the retouched results:
python validation.py --data_path [path_to_dataset] --gpu_id [gpu_id] --model_dir [path_to_models]
  • Use matlab to calculate the measures in our paper:
calculate_metrics(source_dir, target_dir, mask_dir)

Pretrained Models

mv your/path/to/pretrained_models/* saved_models/
  • specify the --model_dir and --epoch (-1) to validate or initialize the training using the pretrained models, e.g.,
python validation.py --data_path [path_to_dataset] --gpu_id [gpu_id] --model_dir mask_noglc_a --epoch -1
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir mask_noglc_a --epoch -1

Citation

If you use this dataset or code for your research, please cite our paper.

@inproceedings{jie2021PPR10K,
  title={PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency},
  author={Liang, Jie and Zeng, Hui and Cui, Miaomiao and Xie, Xuansong and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Related Projects

3D LUT

Contact

Should you have any questions, please contact me via [email protected].

Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022