Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Related tags

Deep LearningABINet
Overview

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

The official code of ABINet (CVPR 2021, Oral).

ABINet uses a vision model and an explicit language model to recognize text in the wild, which are trained in end-to-end way. The language model (BCN) achieves bidirectional language representation in simulating cloze test, additionally utilizing iterative correction strategy.

framework

Runtime Environment

  • We provide a pre-built docker image using the Dockerfile from docker/Dockerfile

  • Running in Docker

    $ [email protected]:FangShancheng/ABINet.git
    $ docker run --gpus all --rm -ti --ipc=host -v $(pwd)/ABINet:/app fangshancheng/fastai:torch1.1 /bin/bash
    
  • (Untested) Or using the dependencies

    pip install -r requirements.txt
    

Datasets

  • Training datasets

    1. MJSynth (MJ):
    2. SynthText (ST):
    3. WikiText103, which is only used for pre-trainig language models:
  • Evaluation datasets, LMDB datasets can be downloaded from BaiduNetdisk(passwd:1dbv), GoogleDrive.

    1. ICDAR 2013 (IC13)
    2. ICDAR 2015 (IC15)
    3. IIIT5K Words (IIIT)
    4. Street View Text (SVT)
    5. Street View Text-Perspective (SVTP)
    6. CUTE80 (CUTE)
  • The structure of data directory is

    data
    ├── charset_36.txt
    ├── evaluation
    │   ├── CUTE80
    │   ├── IC13_857
    │   ├── IC15_1811
    │   ├── IIIT5k_3000
    │   ├── SVT
    │   └── SVTP
    ├── training
    │   ├── MJ
    │   │   ├── MJ_test
    │   │   ├── MJ_train
    │   │   └── MJ_valid
    │   └── ST
    ├── WikiText-103.csv
    └── WikiText-103_eval_d1.csv
    

Pretrained Models

Get the pretrained models from BaiduNetdisk(passwd:kwck), GoogleDrive. Performances of the pretrained models are summaried as follows:

Model IC13 SVT IIIT IC15 SVTP CUTE AVG
ABINet-SV 97.1 92.7 95.2 84.0 86.7 88.5 91.4
ABINet-LV 97.0 93.4 96.4 85.9 89.5 89.2 92.7

Training

  1. Pre-train vision model
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_vision_model.yaml
    
  2. Pre-train language model
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_language_model.yaml
    
  3. Train ABINet
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/train_abinet.yaml
    

Note:

  • You can set the checkpoint path for vision and language models separately for specific pretrained model, or set to None to train from scratch

Evaluation

CUDA_VISIBLE_DEVICES=0 python main.py --config=configs/train_abinet.yaml --phase test --image_only

Additional flags:

  • --checkpoint /path/to/checkpoint set the path of evaluation model
  • --test_root /path/to/dataset set the path of evaluation dataset
  • --model_eval [alignment|vision] which sub-model to evaluate
  • --image_only disable dumping visualization of attention masks

Visualization

Successful and failure cases on low-quality images:

cases

Citation

If you find our method useful for your reserach, please cite

@article{fang2021read,
  title={Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition},
  author={Fang, Shancheng and Xie, Hongtao and Wang, Yuxin and Mao, Zhendong and Zhang, Yongdong},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

License

This project is only free for academic research purposes, licensed under the 2-clause BSD License - see the LICENSE file for details.

Feel free to contact [email protected] if you have any questions.

JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022