Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

Overview

alt text

The Face Synthetics dataset

Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

It was introduced in our paper Fake It Till You Make It: Face analysis in the wild using synthetic data alone.

Our dataset contains:

  • 100,000 images of faces at 512 x 512 pixel resolution
  • 70 standard facial landmark annotations
  • per-pixel semantic class anotations

It can be used to train machine learning systems for face-related tasks such as landmark localization and face parsing, showing that synthetic data can both match real data in accuracy as well as open up new approaches where manual labelling would be impossible.

Some images also include hands and off-center distractor faces in addition to primary faces centered in the image.

The Face Synthetics dataset can be used for non-commercial research, and is licensed under the license found in LICENSE.txt.

Downloading the dataset

A sample dataset with 100 images (34MB) can be downloaded from here

A sample dataset with 1000 images (320MB) can be downloaded from here

A full dataset of 100,000 images (32GB) can be downloaded from here

Dataset layout

The Face Synthetics dataset is a single .zip file containing color images, segmentation images, and 2D landmark coordinates in a text file.

dataset.zip
├── {frame_id}.png        # Rendered image of a face
├── {frame_id}_seg.png    # Segmentation image, where each pixel has an integer value mapping to the categories below
├── {frame_id}_ldmks.txt  # Landmark annotations for 70 facial landmarks (x, y) coordinates for every row

Our landmark annotations follow the 68 landmark scheme from iBUG with two additional points for the pupil centers. Please note that our 2D landmarks are projections of 3D points and do not follow the outline of the face/lips/eyebrows in the way that is common from manually annotated landmarks. They can be thought of as an "x-ray" version of 2D landmarks.

Each pixel in the segmentation image will belong to one of the following classes:

BACKGROUND = 0
SKIN = 1
NOSE = 2
RIGHT_EYE = 3
LEFT_EYE = 4
RIGHT_BROW = 5
LEFT_BROW = 6
RIGHT_EAR = 7
LEFT_EAR = 8
MOUTH_INTERIOR = 9
TOP_LIP = 10
BOTTOM_LIP = 11
NECK = 12
HAIR = 13
BEARD = 14
CLOTHING = 15
GLASSES = 16
HEADWEAR = 17
FACEWEAR = 18
IGNORE = 255

Pixels marked as IGNORE should be ignored during training.

Notes:

  • Opaque eyeglass lenses are labeled as GLASSES, while transparent lenses as the class behind them.
  • For bushy eyebrows, a few eyebrow pixels may extend beyond the boundary of the face. These pixels are labelled as IGNORE.

Disclaimer

Some of our rendered faces may be close in appearance to the faces of real people. Any such similarity is naturally unintentional, as it would be in a dataset of real images, where people may appear similar to others unknown to them.

Generalization to real data

For best results, we suggest you follow the methodology described in our paper (citation below). Especially note the need for 1) data augmentation; 2) use of a translation layer if evaluating on real data benchmarks that contain different types of annotations.

Our dataset strives to be as diverse as possible and generalizes to real test data as described in the paper. However, you may encounter situations that it does not cover and/or where generalization is less successful. We recommend that machine learning practitioners always test models on real data that is representative of the target deployment scenario.

Citation

If you use the Face Synthetics Dataset your research, please cite the following paper:

@misc{wood2021fake,
    title={Fake It Till You Make It: Face analysis in the wild using synthetic data alone},
    author={Erroll Wood and Tadas Baltru\v{s}aitis and Charlie Hewitt and Sebastian Dziadzio and Matthew Johnson and Virginia Estellers and Thomas J. Cashman and Jamie Shotton},
    year={2021},
    eprint={2109.15102},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Ian Covert 130 Jan 01, 2023
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022