BERTMap: A BERT-Based Ontology Alignment System

Overview

BERTMap: A BERT-based Ontology Alignment System

Important Notices

About

BERTMap is a BERT-based ontology alignment system, which utilizes the textual knowledge of ontologies to fine-tune BERT and make prediction. It also incorporates sub-word inverted indices for candidate selection, and (graph-based) extension and (logic-based) repair modules for mapping refinement.

Essential dependencies

The following packages are necessary but not sufficient for running BERTMap:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch  # pytorch
pip install cython  # the optimized parser of owlready2 relies on Cython
pip install owlready2  # for managing ontologies
pip install tensorboard  # tensorboard logging (optional)
pip install transformers  # huggingface library
pip install datasets  # huggingface datasets

Running BERTMap

IMPORTANT NOTICE: BERTMap relies on class labels for training, but different ontologies have different annotation properties to define the aliases (synonyms), so preprocessing is required for adding all the synonyms to rdf:label before running BERTMap. The preprocessed ontologies involved in our paper together with their reference mappings are available in data.zip.

Clone the repository and run:

# fine-tuning and evaluate bertmap prediction 
python run_bertmap.py -c config.json -m bertmap

# mapping extension (-e specify which mapping set {src, tgt, combined} to be extended)
python extend_bertmap.py -c config.json -e src

# evaluate extended bertmap 
python eval_bertmap.py -c config.json -e src

# repair and evluate final outputs (-t specify best validation threshold)
python repair_bertmap.py -c config.json -e src -t 0.999

# baseline models (edit similarity and pretrained bert embeddings)
python run_bertmap.py -c config.json -m nes
python run_bertmap.py -c config.json -m bertembeds

The script skips data construction once built for the first time to ensure that all of the models share the same set of pre-processed data.

The fine-tuning model is implemented with huggingface Trainer, which by default uses multiple GPUs, for restricting to GPUs of specified indices, please run (for example):

# only device (1) and (2) are visible to the script
CUDA_VISIBLE_DEVICES=1,2 python run_bertmap.py -c config.json -m bertmap 

Configurations

Here gives the explanations of the variables used in config.json for customized BERTMap running.

  • data:
    • task_dir: directory for saving all the output files.
    • src_onto: source ontology name.
    • tgt_onto: target ontology name.
    • task_suffix: any suffix of the task if needed, e.g. the LargeBio track has 'small' and 'whole'.
    • src_onto_file: source ontology file in .owl format.
    • tgt_onto_fil: target ontology file in .owl format.
    • properties: list of textual properties used for constructing semantic data , default is class labels: ["label"].
    • cut: threshold length for the keys of sub-word inverted index, preserve the keys only if their lengths > cut, default is 0.
  • corpora:
    • sample_rate: number of (soft) negative samples for each positive sample generated in corpora (not the ultimate fine-tuning data).
    • src2tgt_mappings_file: reference mapping file for evaluation and semi-supervised learning setting in .tsv format with columns: "Entity1", "Entity2" and "Value".
    • ignored_mappings_file: file in .tsv format but stores mappings that should be ignored by the evaluator.
    • train_map_ratio: proportion of training mappings to used in semi-supervised setting, default is 0.2.
    • val_map_ratio: proportion of validation mappings to used in semi-supervised setting, default is 0.1.
    • test_map_ratio: proportion of test mappings to used in semi-supervised setting, default is 0.7.
    • io_soft_neg_rate: number of soft negative sample for each positive sample generated in the fine-tuning data at the intra-ontology level.
    • io_hard_neg_rate: number of hard negative sample for each positive sample generated in the fine-tuning data at the intra-ontology level.
    • co_soft_neg_rate: number of soft negative sample for each positive sample generated in the fine-tuning data at the cross-ontology level.
    • depth_threshold: classes of depths larger than this threshold will not considered in hard negative generation, default is null.
    • depth_strategy: strategy to compute the depths of the classes if any threshold is set, default is max, choices are max and min.
  • bert
    • pretrained_path: real or huggingface library path for pretrained BERT, e.g. "emilyalsentzer/Bio_ClinicalBERT" (BioClinicalBERT).
    • tokenizer_path: real or huggingface library path for BERT tokenizer, e.g. "emilyalsentzer/Bio_ClinicalBERT" (BioClinicalBERT).
  • fine-tune
    • include_ids: include identity synonyms in the positive samples or not.
    • learning: choice of learning setting ss (semi-supervised) or us (unsupervised).
    • warm_up_ratio: portion of warm up steps.
    • max_length: maximum length for tokenizer (highly important for large task!).
    • num_epochs: number of training epochs, default is 3.0.
    • batch_size: batch size for fine-tuning BERT.
    • early_stop: whether or not to apply early stopping (patience has been set to 10), default is false.
    • resume_checkpoint: path to previous checkpoint if any, default is null.
  • map
    • candidate_limits: list of candidate limits used for mapping computation, suggested values are [25, 50, 100, 150, 200].
    • batch_size: batch size used for mapping computation.
    • nbest: number of top results to be considered.
    • string_match: whether or not to use string match before others.
    • strategy: strategy for classifier scoring method, default is mean.
  • eval:
    • automatic: whether or not automatically evaluate the mappings.

Should you need any further customizaions especially on the evaluation part, please set eval: automatic to false and use your own evaluation script.

Acknolwedgements

The repair module is credited to Ernesto Jiménez Ruiz et al., and the code can be found here.

Owner
KRR
Knowledge Representation and Reasoning Group - University of Oxford
KRR
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023