[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Overview

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Announcement πŸ”₯

We have not tested the code yet. We will finish this project by April.

Introduction

This repo contains PyTorch implementation for paper Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement (CVPR2022)

overview

@inproceedings{xu2022br,
author = {Xu, Xiuwei and Wang, Yifan and Zheng, Yu and Rao, Yongming and Lu, Jiwen and Zhou, Jie},
title = {Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022}
}

Other papers related to 3D object detection with synthetic shape:

  • RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection (ICCV 2021)

New dataset πŸ’₯

We conduct additional experiment on the more challenging Matterport3D dataset. From ModelNet40 and Matterport3D, we select all 13 shared categories, each containing more than 80 object instances in Matterport3D training set, to construct our benchmark (Matterport3d-md40). Below is the performance of FSB, WSB and BR (point-version) based on Votenet: overview

Note that we use OpenCV to estimate the rotated bounding boxes (RBB) as ground-truth, instead of the axis-aligned bounding boxes used in ScanNet-md40 benchmark.

ScanNet-md40 and Matterport3d-md40 are two more challenging benckmarks for indoor 3D object detection. We hope they will promote future research on small object detection and synthetic-to-real scene understanding.

Dependencies

We evaluate this code with Pytorch 1.8.1 (cuda11), which is based on the official implementation of Votenet and GroupFree3D. Please follow the requirements of them to prepare the environment. Other packages can be installed using:

pip install open3d sklearn tqdm

Current code base is tested under following environment:

  1. Python 3.6.13
  2. PyTorch 1.8.1
  3. numpy 1.19.2
  4. open3d 0.12.0
  5. opencv-python 4.5.1.48
  6. plyfile 0.7.3
  7. scikit-learn 0.24.1

Data preparation

ScanNet

To start from the raw data, you should:

  • Follow the README under GroupFree3D/scannet or Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/ScanNet to generate the virtual scenes.

The processed data can also be downloaded from here. They should be placed to paths:

./detection/Votenet/scannet/
./detection/GroupFree3D/scannet/

After that, the file directory should be like:

...
└── Votenet (or GroupFree3D)
    β”œβ”€β”€ ...
    └── scannet
        β”œβ”€β”€ ...
        β”œβ”€β”€ scannet_train_detection_data_md40
        β”œβ”€β”€ scannet_train_detection_data_md40_obj_aug
        └── scannet_train_detection_data_md40_obj_mesh_aug

Matterport3D

To start from the raw data, you should:

  • Follow the README under Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/Matterport3D to generate the virtual scenes.

The processed data can also be downloaded from here.

The file directory should be like:

...
└── Votenet
    β”œβ”€β”€ ...
    └── matterport
        β”œβ”€β”€ ...
        β”œβ”€β”€ matterport_train_detection_data_md40
        β”œβ”€β”€ matterport_train_detection_data_md40_obj_aug
        └── matterport_train_detection_data_md40_obj_mesh_aug

Usage

Please follow the instructions below to train different models on ScanNet. Change --dataset scannet to --dataset matterport for training on Matterport3D.

Votenet

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended GPU num: 1

cd Votenet

CUDA_VISIBLE_DEVICES=0 python train_Votenet_FSB.py --dataset scannet --log_dir log_Votenet_FSB --num_point 40000

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 1

CUDA_VISIBLE_DEVICES=0 python train_Votenet_WSB.py --dataset scannet --log_dir log_Votenet_WSB --num_point 40000

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRM --num_point 40000

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRM_Refine --num_point 40000 --checkpoint_path log_Votenet_BRM/train_BR.tar

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRP --num_point 40000 --dataset_without_mesh

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRP_Refine --num_point 40000 --checkpoint_path log_Votenet_BRP/train_BR.tar --dataset_without_mesh

GroupFree3D

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended num of GPUs: 4

cd GroupFree3D

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_FSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_FSB --batch_size 4

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_WSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_WSB --batch_size 4

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM --batch_size 4

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP --batch_size 4 --dataset_without_mesh

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2 --dataset_without_mesh

TODO list

We will add the following to this repo:

  • Virtual scene generation for Matterport3D
  • Data and code for training Votenet (both baseline and BR) on the Matterport3D dataset

Acknowledgements

We thank a lot for the flexible codebase of Votenet and GroupFree3D.

Owner
Xiuwei Xu
3D vision, data/computation-efficient learning
Xiuwei Xu
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website β€” VLN-CE Challenge β€” RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website β€’ Key Features β€’ How To Use β€’ Docs β€’

Pytorch Lightning 21.1k Dec 29, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

YΓ€n.PnG 16 Nov 04, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022