[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Overview

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Announcement ๐Ÿ”ฅ

We have not tested the code yet. We will finish this project by April.

Introduction

This repo contains PyTorch implementation for paper Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement (CVPR2022)

overview

@inproceedings{xu2022br,
author = {Xu, Xiuwei and Wang, Yifan and Zheng, Yu and Rao, Yongming and Lu, Jiwen and Zhou, Jie},
title = {Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022}
}

Other papers related to 3D object detection with synthetic shape:

  • RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection (ICCV 2021)

New dataset ๐Ÿ’ฅ

We conduct additional experiment on the more challenging Matterport3D dataset. From ModelNet40 and Matterport3D, we select all 13 shared categories, each containing more than 80 object instances in Matterport3D training set, to construct our benchmark (Matterport3d-md40). Below is the performance of FSB, WSB and BR (point-version) based on Votenet: overview

Note that we use OpenCV to estimate the rotated bounding boxes (RBB) as ground-truth, instead of the axis-aligned bounding boxes used in ScanNet-md40 benchmark.

ScanNet-md40 and Matterport3d-md40 are two more challenging benckmarks for indoor 3D object detection. We hope they will promote future research on small object detection and synthetic-to-real scene understanding.

Dependencies

We evaluate this code with Pytorch 1.8.1 (cuda11), which is based on the official implementation of Votenet and GroupFree3D. Please follow the requirements of them to prepare the environment. Other packages can be installed using:

pip install open3d sklearn tqdm

Current code base is tested under following environment:

  1. Python 3.6.13
  2. PyTorch 1.8.1
  3. numpy 1.19.2
  4. open3d 0.12.0
  5. opencv-python 4.5.1.48
  6. plyfile 0.7.3
  7. scikit-learn 0.24.1

Data preparation

ScanNet

To start from the raw data, you should:

  • Follow the README under GroupFree3D/scannet or Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/ScanNet to generate the virtual scenes.

The processed data can also be downloaded from here. They should be placed to paths:

./detection/Votenet/scannet/
./detection/GroupFree3D/scannet/

After that, the file directory should be like:

...
โ””โ”€โ”€ Votenet (or GroupFree3D)
    โ”œโ”€โ”€ ...
    โ””โ”€โ”€ scannet
        โ”œโ”€โ”€ ...
        โ”œโ”€โ”€ scannet_train_detection_data_md40
        โ”œโ”€โ”€ scannet_train_detection_data_md40_obj_aug
        โ””โ”€โ”€ scannet_train_detection_data_md40_obj_mesh_aug

Matterport3D

To start from the raw data, you should:

  • Follow the README under Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/Matterport3D to generate the virtual scenes.

The processed data can also be downloaded from here.

The file directory should be like:

...
โ””โ”€โ”€ Votenet
    โ”œโ”€โ”€ ...
    โ””โ”€โ”€ matterport
        โ”œโ”€โ”€ ...
        โ”œโ”€โ”€ matterport_train_detection_data_md40
        โ”œโ”€โ”€ matterport_train_detection_data_md40_obj_aug
        โ””โ”€โ”€ matterport_train_detection_data_md40_obj_mesh_aug

Usage

Please follow the instructions below to train different models on ScanNet. Change --dataset scannet to --dataset matterport for training on Matterport3D.

Votenet

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended GPU num: 1

cd Votenet

CUDA_VISIBLE_DEVICES=0 python train_Votenet_FSB.py --dataset scannet --log_dir log_Votenet_FSB --num_point 40000

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 1

CUDA_VISIBLE_DEVICES=0 python train_Votenet_WSB.py --dataset scannet --log_dir log_Votenet_WSB --num_point 40000

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRM --num_point 40000

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRM_Refine --num_point 40000 --checkpoint_path log_Votenet_BRM/train_BR.tar

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRP --num_point 40000 --dataset_without_mesh

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRP_Refine --num_point 40000 --checkpoint_path log_Votenet_BRP/train_BR.tar --dataset_without_mesh

GroupFree3D

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended num of GPUs: 4

cd GroupFree3D

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_FSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_FSB --batch_size 4

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_WSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_WSB --batch_size 4

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM --batch_size 4

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP --batch_size 4 --dataset_without_mesh

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2 --dataset_without_mesh

TODO list

We will add the following to this repo:

  • Virtual scene generation for Matterport3D
  • Data and code for training Votenet (both baseline and BR) on the Matterport3D dataset

Acknowledgements

We thank a lot for the flexible codebase of Votenet and GroupFree3D.

Owner
Xiuwei Xu
3D vision, data/computation-efficient learning
Xiuwei Xu
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (เค‹เคทเคฟเค•เฅ‡เคถ) 82 Dec 13, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
source code of โ€œVisual Saliency Transformerโ€ (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper โ€œVisual Saliency Transformerโ€ by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
้ ˜ๅŸŸใ‚’ๆŒ‡ๅฎšใ—ใ€ใ‚ญใƒผใ‚’ๅ…ฅๅŠ›ใ™ใ‚‹ใ“ใจใง็”ปๅƒใ‚’ไฟๅญ˜ใ™ใ‚‹ใƒ„ใƒผใƒซใงใ™ใ€‚ใ‚ฏใƒฉใ‚นๅˆ†้กž็”จใฎใƒ‡ใƒผใ‚ฟใ‚ปใƒƒใƒˆไฝœๆˆใ‚’ๆƒณๅฎšใ—ใฆใ„ใพใ™ใ€‚

image-capture-class-annotation ้ ˜ๅŸŸใ‚’ๆŒ‡ๅฎšใ—ใ€ใ‚ญใƒผใ‚’ๅ…ฅๅŠ›ใ™ใ‚‹ใ“ใจใง็”ปๅƒใ‚’ไฟๅญ˜ใ™ใ‚‹ใƒ„ใƒผใƒซใงใ™ใ€‚ ใ‚ฏใƒฉใ‚นๅˆ†้กž็”จใฎใƒ‡ใƒผใ‚ฟใ‚ปใƒƒใƒˆไฝœๆˆใ‚’ๆƒณๅฎšใ—ใฆใ„ใพใ™ใ€‚ Requirement OpenCV 3.4.2 or later Usage ๅฎŸ่กŒๆ–นๆณ•ใฏไปฅไธ‹ใงใ™ใ€‚ ่ตทๅ‹•ๅพŒใฏใƒžใ‚ฆใ‚นใ‚ฏใƒชใƒƒใ‚ฏ4

KazuhitoTakahashi 5 May 28, 2021
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021