Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Overview

Self-Tuning for Data-Efficient Deep Learning

This repository contains the implementation code for paper:
Self-Tuning for Data-Efficient Deep Learning
Ximei Wang, Jinghan Gao, Mingsheng Long, Jianmin Wang
38th International Conference on Machine Learning (ICML 2021)
[Project Page] [Paper] [Video] [Slide] [Poster] [Blog] [Zhihu] [SlidesLive]


Brief Introduction for Data-Efficient Deep Learning

Mitigating the requirement for labeled data is a vital issue in deep learning community. However, common practices of TL and SSL only focus on either the pre-trained model or unlabeled data. This paper unleashes the power of both worlds by proposing a new setup named data-efficient deep learning, aims to mitigate the requirement of labeled data by unifying the exploration of labeled and unlabeled data and the transfer of pre-trained model.

To address the challenge of confirmation bias in self-training, a general Pseudo Group Contrast mechanism is devised to mitigate the reliance on pseudo-labels and boost the tolerance to false labels. To tackle the model shift problem, we unify the exploration of labeled and unlabeled data and the transfer of a pre-trained model, with a shared key queue beyond just 'parallel training'. Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins, e.g., it doubles the accuracy of fine-tuning on Stanford-Cars provided with 15% labels.

Dependencies

  • python3.6
  • torch == 1.3.1 (with suitable CUDA and CuDNN version)
  • torchvision == 0.4.2
  • tensorboardX
  • numpy
  • argparse

Datasets

Dataset Download Link
CUB-200-2011 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars http://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC Aircraft http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Cifar100 https://www.cs.toronto.edu/~kriz/cifar.html
  • You can either download datasets via the above links or directly run the commands shown below to automatically download datasets as well as data lists from Tsinghua Cloud.

Disclaimer on Datasets

This open-sourced code will download and prepare public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have licenses to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this code, please get in touch with us through a GitHub issue. Thanks for your contribution to the ML community!

Quick Start

  • The running commands for several datasets are shown below. Please refer to run.sh for commands for datasets with other label ratios.
python src/main.py  --root ./StanfordCars --batch_size 24 --logdir vis/ --gpu_id 0 --queue_size 32 --projector_dim 1024 --backbone resnet50  --label_ratio 15 --pretrained
python src/main.py  --root ./CUB200 --batch_size 24 --logdir vis/ --gpu_id 1 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./Aircraft --batch_size 24 --logdir vis/ --gpu_id 2 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./cifar100 --batch_size 20 --logdir vis/ --gpu_id 3 --queue_size 32 --backbone efficientnet-b2 --num_labeled 10000 --expand_label --pretrained --projector_dim 1024

Tensorboard Log

Dataset Label Ratio 1 Label Ratio 2 Label Ratio 3
CUB-200-2011 15% 30% 50%
Stanford Cars 15% 30% 50%
FGVC Aircraft 15% 30% 50%
Cifar100 400 2500 10000
  • We achieved better results than that reported in the paper, after fixing some small bugs of the code.

Updates

  • [07/2021] We have created a Blog post in Chinese for this work. Check it out for more details!
  • [07/2021] We have released the code and models. You can find all reproduced checkpoints via this link.
  • [06/2021] A five minute video is released to briefly introduce the main idea of Self-Tuning.
  • [05/2021] Paper accepted to ICML 2021 as a Short Talk.
  • [02/2021] arXiv version posted. Please stay tuned for updates.

Citation

If you find this code or idea useful, please cite our work:

@inproceedings{wang2021selftuning,
  title={Self-Tuning for Data-Efficient Deep Learning},
  author={Wang, Ximei and Gao, Jinghan and Long, Mingsheng and Wang, Jianmin},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Owner
THUML @ Tsinghua University
Machine Learning Group, School of Software, Tsinghua University
THUML @ Tsinghua University
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022