Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Overview

Self-Tuning for Data-Efficient Deep Learning

This repository contains the implementation code for paper:
Self-Tuning for Data-Efficient Deep Learning
Ximei Wang, Jinghan Gao, Mingsheng Long, Jianmin Wang
38th International Conference on Machine Learning (ICML 2021)
[Project Page] [Paper] [Video] [Slide] [Poster] [Blog] [Zhihu] [SlidesLive]


Brief Introduction for Data-Efficient Deep Learning

Mitigating the requirement for labeled data is a vital issue in deep learning community. However, common practices of TL and SSL only focus on either the pre-trained model or unlabeled data. This paper unleashes the power of both worlds by proposing a new setup named data-efficient deep learning, aims to mitigate the requirement of labeled data by unifying the exploration of labeled and unlabeled data and the transfer of pre-trained model.

To address the challenge of confirmation bias in self-training, a general Pseudo Group Contrast mechanism is devised to mitigate the reliance on pseudo-labels and boost the tolerance to false labels. To tackle the model shift problem, we unify the exploration of labeled and unlabeled data and the transfer of a pre-trained model, with a shared key queue beyond just 'parallel training'. Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins, e.g., it doubles the accuracy of fine-tuning on Stanford-Cars provided with 15% labels.

Dependencies

  • python3.6
  • torch == 1.3.1 (with suitable CUDA and CuDNN version)
  • torchvision == 0.4.2
  • tensorboardX
  • numpy
  • argparse

Datasets

Dataset Download Link
CUB-200-2011 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars http://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC Aircraft http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Cifar100 https://www.cs.toronto.edu/~kriz/cifar.html
  • You can either download datasets via the above links or directly run the commands shown below to automatically download datasets as well as data lists from Tsinghua Cloud.

Disclaimer on Datasets

This open-sourced code will download and prepare public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have licenses to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this code, please get in touch with us through a GitHub issue. Thanks for your contribution to the ML community!

Quick Start

  • The running commands for several datasets are shown below. Please refer to run.sh for commands for datasets with other label ratios.
python src/main.py  --root ./StanfordCars --batch_size 24 --logdir vis/ --gpu_id 0 --queue_size 32 --projector_dim 1024 --backbone resnet50  --label_ratio 15 --pretrained
python src/main.py  --root ./CUB200 --batch_size 24 --logdir vis/ --gpu_id 1 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./Aircraft --batch_size 24 --logdir vis/ --gpu_id 2 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./cifar100 --batch_size 20 --logdir vis/ --gpu_id 3 --queue_size 32 --backbone efficientnet-b2 --num_labeled 10000 --expand_label --pretrained --projector_dim 1024

Tensorboard Log

Dataset Label Ratio 1 Label Ratio 2 Label Ratio 3
CUB-200-2011 15% 30% 50%
Stanford Cars 15% 30% 50%
FGVC Aircraft 15% 30% 50%
Cifar100 400 2500 10000
  • We achieved better results than that reported in the paper, after fixing some small bugs of the code.

Updates

  • [07/2021] We have created a Blog post in Chinese for this work. Check it out for more details!
  • [07/2021] We have released the code and models. You can find all reproduced checkpoints via this link.
  • [06/2021] A five minute video is released to briefly introduce the main idea of Self-Tuning.
  • [05/2021] Paper accepted to ICML 2021 as a Short Talk.
  • [02/2021] arXiv version posted. Please stay tuned for updates.

Citation

If you find this code or idea useful, please cite our work:

@inproceedings{wang2021selftuning,
  title={Self-Tuning for Data-Efficient Deep Learning},
  author={Wang, Ximei and Gao, Jinghan and Long, Mingsheng and Wang, Jianmin},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Owner
THUML @ Tsinghua University
Machine Learning Group, School of Software, Tsinghua University
THUML @ Tsinghua University
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022