Train DeepLab for Semantic Image Segmentation

Overview

Train DeepLab for Semantic Image Segmentation

Martin Kersner, [email protected]

This repository contains scripts for training DeepLab for Semantic Image Segmentation using strongly and weakly annotated data. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs and Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation papers describe training procedure using strongly and weakly annotated data, respectively.

git clone --recursive https://github.com/martinkersner/train-DeepLab.git 

In following tutorial we use couple of shell variables in order to reproduce the same results without any obtacles.

  • $DEEPLAB denotes the main directory where repository is checked out
  • $DATASETS denotes path to directory where all necessary datasets are stored
  • $LOGNAME denotes name of log file stored in $DEEPLAB/exper/voc12/log directory
  • $DOWNLOADS denotes directory where downloaded files are stored

Prerequisites

Install DeepLab caffe

You should follow instructions for installation. However, if you have already fulfilled all necessary dependencies running following commands from code/ directory should do the job.

cd $DEEPLAB/code
cp Makefile.config.example Makefile.config
# Adjust Makefile.config (for example, if using Anaconda Python, or if cuDNN is desired)
make all
make pycaffe
make test # NOT mandatory
make runtest # NOT mandatory

Compile DenseCRF

Go to $DEEPLAB/code/densecrf directory, modify Makefile if necessary and run make command. Or you can run following commands in sequential order.

cd $DEEPLAB/code/densecrf
# Adjust Makefile if necessary
make

Strong annotations

In this part of tutorial we train DCNN for semantic image segmentation using PASCAL VOC dataset with all 21 classes and also with limited number of them. As a training data we use only strong annotations (pixel level labels).

Dataset

All necessary data for training are listed in $DEEPLAB/exper/voc12/list/original. Training scripts are prepared to employ either PASCAL VOC 2012 dataset or augmented PASCAL VOC dataset which contains more images.

# augmented PASCAL VOC
cd $DATASETS
wget http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz # 1.3 GB
tar -zxvf benchmark.tgz
mv benchmark_RELEASE VOC_aug

# original PASCAL VOC 2012
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar # 2 GB
tar -xvf VOCtrainval_11-May-2012.tar
mv VOCdevkit/VOC2012 VOC2012_orig && rm -r VOCdevkit

Data conversions

Unfortunately, ground truth labels within augmented PASCAL VOC dataset are distributed as Matlab data files, therefore we will have to convert them before we can start training itself.

cd $DATASETS/VOC_aug/dataset
mkdir cls_png
cd $DEEPLAB
./mat2png.py $DATASETS/VOC_aug/dataset/cls $DATASETS/VOC_aug/dataset/cls_png

Caffe softmax loss function can accept only one-channel ground truth labels. However, those labels in original PASCAL VOC 2012 dataset are defined as RGB images. Thus, we have to reduce their dimensionality.

cd $DATASETS/VOC2012_orig
mkdir SegmentationClass_1D

cd $DEEPLAB
./convert_labels.py $DATASETS/VOC2012_orig/SegmentationClass/ \
  $DATASETS/VOC2012_orig/ImageSets/Segmentation/trainval.txt \
  $DATASETS/VOC2012_orig/SegmentationClass_1D/

At last, part of code which computes DenseCRF is able to work only with PPM image files, hence we have to perform another conversion. This step is necessary only if we want to use DenseCRF separately and as one of Caffe layers.

cd $DEEPLAB

# augmented PASCAL VOC
mkdir $DATASETS/VOC_aug/dataset/img_ppm
./jpg2ppm.sh $DATASETS/VOC_aug/dataset/img $DATASETS/VOC_aug/dataset/img_ppm

# original PASCAL VOC 2012
mkdir $DATASETS/VOC2012_orig/PPMImages
./jpg2ppm.sh $DATASETS/VOC2012_orig/JPEGImages $DATASETS/VOC2012_orig/PPMImages

Connect $DATASETS into $DEEPLAB

Then we create symbolic links to training images and ground truth labels.

mkdir -p $DEEPLAB/exper/voc12/data
cd $DEEPLAB/exper/voc12/data

# augmented PASCAL VOC
ln -s $DATASETS/VOC_aug/dataset/img images_aug
ln -s $DATASETS/VOC_aug/dataset/cls_png labels_aug
ln -s $DATASETS/VOC_aug/dataset/img_ppm images_aug_ppm

# original PASCAL VOC 2012
ln -s $DATASETS/VOC2012_orig/JPEGImages images_orig
ln -s $DATASETS/VOC2012_orig/SegmentationClass_1D labels_orig
ln -s $DATASETS/VOC2012_orig/PPMImages images_orig_ppm

Download necessary files for training

Before the first training we have to download several files. Using the command below we download initialization model, definition its network and solver. It will also setup symbolic links in directories where those files are later expected during training.

./get_DeepLab_LargeFOV_voc12_data.sh

In order to easily switch between datasets we will modify image lists appropriately.

./prepare_voc12_data_lists.sh

Training with all classes

run_pascal_strong.sh can go through 4 different phases (twice training, twice testing), but I wouldn't recommend to run testing phases using this script. Actually, they are currently disabled. At lines 27 through 30, any of phase can be enabled (value 1) or disabled (value 0).

Finally, we can start training.

./run_pascal_strong.sh

Plotting training information

Training script generates information which are printed to terminal and also stored in $DEEPLAB/exper/voc12/log/DeepLab-LargeFOV/ directory. For every printed iteration there are displayed loss and three different model evalutation metrics for currently employed batch. They denote pixel accuracy, average recall and average Jacard index, respectively. Even though those values are retrievd from training data, they possess important information about training and using the script below we can plot them as a graph. The script generates two graphs evaluation.png and loss.png.

cd $DEEPLAB
./loss_from_log.py exper/voc12/log/DeepLab-LargeFOV/`ls -t exper/voc12/log/DeepLab-LargeFOV/ | head -n 1` # for the newest log
#./loss_from_log.py exper/voc12/log/DeepLab-LargeFOV/$LOGNAME # specified log 

Training with only 3 classes

If we want to train with limited number of classes we have to modify ground truth labels and also list of images that can be exploited for training. In filter_images.py at line 17 are specified classes that we are interested in (defaultly bird, bottle and chair).

# augmented PASCAL VOC 
mkdir -p $DATASETS/VOC_aug/dataset/cls_sub_png
cd $DEEPLAB/exper/voc12/data/
ln -s $DATASETS/VOC_aug/dataset/cls_sub_png labels_sub_aug
find exper/voc12/data/labels_aug/ -printf '%f\n' | sed 's/\.png//'  | tail -n +2 > all_aug_data.txt
python filter_images.py $DATASETS/VOC_aug/dataset/cls_png/ $DATASETS/VOC_aug/dataset/cls_sub_png/ all_aug_data.txt sub_aug_data.txt

# original PASCAL VOC 2012 
mkdir -p $DATASETS/VOC2012_orig/SegmentationClass_sub_1D
cd $DEEPLAB/exper/voc12/data/
ln -s $DATASETS/VOC2012_orig/SegmentationClass_sub_1D labels_sub_orig
find exper/voc12/data/labels_orig/ -printf '%f\n' | sed 's/\.png//'  | tail -n +2 > all_orig_data.txt
python filter_images.py $DATASETS/VOC2012_orig/SegmentationClass_1D/ $DATASETS/VOC2012_orig/SegmentationClass_sub_1D/ all_orig_data.txt sub_orig_data.txt

./filter_lists.sh

The number of classes that we plan to use is set at lines 13 and 14 in run_pascal_strong.sh. This number should be always higher by 1 than number of specified classes in filter_images.py script, because we also consider background as one of classes.

After, we can proceed to training.

./run_pascal_strong.sh

We can also use the same script for plotting training information.

Evaluation

phase 1 (24,000 iter., no CRF) phase 2 (12,000 iter., no CRF)
pixel accuracy 0.8315 0.8523
mean accuracy 0.6807 0.6987
mean IU 0.6725 0.6937
frequency weighted IU 0.8182 0.8439

Visual results

Employed model was trained without CRF in phase 1 (24,000 iterations) and then in phase 2 (12,000 iterations), but results here exploited DENSE_CRF layer. Displayed images (bird: 2010_004994, bottle: 2007_000346, chair: 2008_000673) are part of validation dataset stored in $DEEPLAB/exper/voc12/list_subset/val.txt. Colors of segments differ from original ground truth labels because employed model was trained only for 3 classes + background.

Weak annotations

In a case we don't possess enough training data, weakly annotated ground truth labels can be exploited using DeepLab.

Dataset

At first you should download SegmentationClassBboxRect_Visualization.zip and SegmentationClassBboxSeg_Visualization.zip from link https://ucla.app.box.com/s/laif889j7pk6dj04b0ou1apm2sgub9ga and run commands below to prepare data for use.

cd $DOWNLOADS
mv SegmentationClassBboxRect_Visualization.zip $DATASETS/VOC_aug/dataset/
mv SegmentationClassBboxSeg_Visualization.zip $DATASETS/VOC_aug/dataset/

cd $DATASETS/VOC_aug/dataset
unzip SegmentationClassBboxRect_Visualization.zip
unzip SegmentationClassBboxSeg_Visualization.zip

mv SegmentationClassBboxAug_Visualization/ SegClassBboxAug_RGB
mv SegmentationClassBboxErode20CRFAug_Visualization/ SegClassBboxErode20CRFAug_RGB

Downloaded weak annotations were created using Matlab and because of that labels are sometimes stored with one channel and other times with three channels. Similarly to strong annotations we have to convert all labels to the same one channel format. In order to cope with it I recommend you to use Matlab script convert_weak_labels.m (if anybody knows how to perform the same conversion using python I would be really interested) which is stored in $DEEPLAB directory. Before running script you have to specify path to datasets on line 3.

After script successfully finished we have to create symbolic links to be able to reach data during training.

cd $DEEPLAB/exper/voc12/data
ln -s $DATASETS/VOC_aug/dataset/SegClassBboxAug_1D/ labels_bbox
ln -s $DATASETS/VOC_aug/dataset/SegClassBboxErode20CRFAug_1D/ labels_bboxcrf

Create subsets

Training DeepLab using weak labels enables to employ datasets of different sizes. Following snippet creates those subsets of strong dataset and also necessary training lists with weak labels.

cd $DEEPLAB
./create_weak_lists.sh

cd $DEEPLAB/exper/voc12/list
head -n 200  train.txt > train200.txt
head -n 500  train.txt > train500.txt
head -n 750  train.txt > train750.txt
head -n 1000 train.txt > train1000.txt

cp train_bboxcrf.txt trainval_bboxcrf.txt
cp train_bbox.txt trainval_bbox.txt

Training

Training using weak annotations is similar to exploiting strong annotations. The only difference is the name of script which should be run.

./run_pascal_weak.sh

Plotting is also same as for strong annotations.

Evaluation

5000 weak annotations and 200 strong annotations

phase 1 (6,000 iter., no CRF) phase 2 (8,000 iter., no CRF)
pixel accuracy 0.8688 0.8671
mean accuracy 0.7415 0.750
mean IU 0.6324 0.6343
frequency weighted IU 0.7962 0.7951

Note

Init models are modified VGG-16 networks with changed kernel size from 7x7 to 4x4 or 3x3. There are two models that can be employed for initialization: vgg16_128, vgg16_20M.

The first fully connected layer of vgg16_128 has kernel size 4x4 and 4096 filters. It can be used for DeepLab basic model. In vgg16_20M, the first fully connected layer has kernel size 3x3 and 1024 filters. It can be used for DeepLab-LargeFOV.

Currently training is focused on DeepLab-LargeFOV.

FAQ

At http://ccvl.stat.ucla.edu/deeplab_faq/ you can find frequently asked questions about DeepLab for semantic image segmentation.

Owner
Martin Kersner
Machine Learning Engineer
Martin Kersner
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022